The deep structure of the Zagros mountain system according to Taylor approximation seismic tomography data

Authors

  • T.O. Tsvetkova Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine
  • O.B. Gintov Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine
  • I.V. Bugaienko Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine
  • L.M. Zaiets Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gj.v45i5.289104

Keywords:

Zagros, Iranian plate, seismic tomography, mantle, subduction, collision

Abstract

The seismic tomographic model obtained by the Taylor approximation method provides new constraints on the Earth’s crust and mantle structure beneath the Zagros mountain system at depths of 50—850 km. Based on structural geology and seismic tomography data, we divide the Zagros into Northwestern (Kirkuk, Lurestan, and Dezful regions) and Central (Kazerun and Fars regions) parts. The Central Zagros was formed due to subduction-collision tectonics, and the Northwestern Zagros was formed due to a collision-shear (transpression) tectonic process. Based on the 3D P-velocity model of the Zagros and its surrounding mantle, a high-velocity distal southeastern part of the Arabian Plate was established, subducting under the Central Zagros and the Iranian Plate, following the subduction of the Neotethys. This slab covers an area of 23—32°NL — 49—58°EL, i.e., the Bay of Bengal, the Central Zagros, and the southern part of the Iranian Plate. The maximum horizontal extent of the submerging part of the Arabian slab is 800—1100 km, and the maximum submersion depth is 450—500 km. A number of projections on the horizontal plane of the lines of intersection of the surface of the subducting Arabian Plate with horizontal sections of 50, 100, 200, 300, and 400 km were constructed. We obtained the direction of plate plunging, which in different areas varies from northern to northeastern 30—45°. In the Northwestern Zagros, according to the model, traces of subduction do not appear; however, right-lateral strike-slip deformations along the Main Recent Fault are visible and continue now in the crust. The difference in the types of deformation of the Northwestern and Central Zagros is most likely due to the features of the outlines of the eastern edge of the Arabian Plate and the complex nature of its movements. Analysis of earthquake mechanisms in 1977—2001 shows that the movement of the Arabian Plate could have occurred with frequent alternation in the S-N and N-E directions due to the alternation of spreading processes in the Gulf of Aden and the southeastern part of the Red Sea.

References

Agard, P., Monié, P., Gerber, W., Omrani, J., Molinaro, M., Meyer, B., Labrousse, L., Vrielynck, B., Jolivet, L., & Yamato, P. (2006). Transient, sy¬no¬bduction exhumation of Zagros blueschists inferred from P-T, deformation, time, and kinematic constraints: implications for Neotethyan wedge dynamics. Journal of Geophysical Research, 111, B11401. https://doi.org/10.1029/2005JB004103.

Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., & Wortel, R. (2011). Zagros orogeny: A subduction-dominated process. Geological Magazine, 148(5-6), 692—725. https://doi.org/10.1017/S001675681100046X.

Aki, K., Christoffersson, A., & Husebye, E.S. (1977). Determination of the three-dimensional seismic structure of the lithosphere. Journal of Geophysical Research, 82(2), 277—296. https://doi.org/10.1029/JB082i002p00277.

Alavi, M. (2007). Structures of the Zagros fold-thrust belt in Iran. American Journal of Science, 307(9), 1064—1095. https://doi.org/10. 2475/09.2007.02.

Alavi, M. (1994). Tectonics of Zagros orogenic Belt of Iran: new data and interpretation. Tectonophysics, 229(3-4), 211—238. https://doi.org/10.1016/0040-1951(94)90030-2.

Alinaghi, A., Koulakov, I., & Thybo, H. (2007). Seismic tomographic imaging of P- and S-waves velocity perturbations in the upper mantle beneath Iran. Geophysical Journal International, 169(3), 1089—1102. https://doi.org/10.1111/j.1365-246X.2007.03317.x.

Allen, M. (2004). Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics, 23, 1—16. https://doi.org/10.1029/2003TC001530.

Artemieva, I.M. (2009). The continental lithosphere: Reconciling thermal, seismic, and petrologic data. Lithos, 109, 23—46. https://doi.org/10.1016/j.lithos.2008.09.015.

Artemieva, I.M. (2019).The lithosphere structure of the European continent from thermal isostasy. Earth-Science Reviews, 188, 454—468. https://doi.org/10.1016/j.earscirev.2018.11.004.

Authemayou, C., Bellier, O., Chardon, D., Malekzade, Z., & Abbassi, M. (2005). Role of Kazerun fault system in active deformation of the Zagros fold-and-thrust belt (Iran). Comptes Rendus Geoscience, 337(5), 539—545. https://doi.org/10.1016/j.crte.2004.12.007.

Berberian, M. (1995). Master blind thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonoрhysics, 241, 193—195, 197, 199—224. https://doi.org/10.1016/0040-1951(94)00185-C.

Berberian, M., & King, G. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210—285. https://doi.org/10.1139/e81-019.

Bugaenko, I.V., Shumlyanskaya, L.A., Zaets, L.N., & Tsvetkova, T.A. (2012). Three-dimensional P-velocity model of the upper mantle of the Western Mediterranean. Geofizicheskiy Zhurnal, 34(1), 14—31. https://doi.org/10.24028/gzh.0203-3100.v34i1.2012.116573 (in Russian).

Chang, S.-U., van der Lee, S., Flanagan, M.P., Bedle, H., Marone, F., Matzel, E.M., Pasyanos, M.E., Rodgers, A.J., Romanowicz, B., & Schmid, C. (2010). Joint inversion for three-dimensional S velocity mantle structure along the Tethyan margin. Journal of Geophysical Research Atmospheres, 115(B8), 1—22. https://doi.org/10.1029/2009JB007204.

Cocks, L.R.M., & Torsvik, T.H. (2006). European geography in a global context from the Vendian to the end of the Paleozoic (pp. 83—95). Geol. Soc., London, Mem., 32. https://doi.org/ 10.1144/GSL.MEM.2006.032.01.05.

Falcon, N.L. (1974). Southern Iran: Zagros Mountains. In A. Spencer (Ed.), Mesozoic-Cenozoic Orogenic Belts, Data for Orogenic Studies: Alpine-Himalayan Orogens (pp. 199—211). Geol. Soc., London, Spec. Publ., No 4.

Geyko, V.S. (2004). A general theory of the seismic travel-time tomography. Geofizicheskiy Zhurnal, 26(1), 3—32.

Geyko, V.S. (1997). Taylor approximation of the wave equation and the eikonal equation in inverse seismic problems. Geofizicheskiy Zhurnal, 19(3), 48—68 (in Russian).

Geyko, V.S., Bugaenko, I.V., Shumlyanskaya, L.A., Zaets, L.N., & Tsvetkova, T.A. (2007). 3-D P-velocity structure of the upper mantle References of the Eastern Mediterranean. Geofizicheskiy zhurnal, 29(4), 13—30 (in Russian).

Geyko, V.S., Shumlyanskaya, L.A., Bugaenko, I.V., Zaets, L.N., & Tsvetkova, T.A. (2006). Three-dimensional model of the upper mantle of Ukraine by the terms of P-waves arrival. Geofizicheskiy Zhurnal, 28(1), 3—16 (in Russian).

Geyko, V.S., & Tsvetkova, T.A. (1989). On uniqueness in solution of unidimensional inverse kinematik problem of seismic. Geofizicheskiy Zhurnal, 11(6), 61—67 (in Russian).

Geyko, V.S., Tsvetkova, T.A., Sannikova, N.P., Livanova, L.P., & Geyko, K.V. (1998). Regional 3-D P-velocity structure of the mantle of northwestern Eurasia — I. Europe. 1. Geofizicheskiy Zhurnal, 20(3), 67—91 (in Russian).

Geyko, V.S., Tsvetkova, T.A., Shumlyanskaya, L.A., Bugaenko, I.V., & Zaets, L.N. (2005). Regional 3D P-velocity model of the Sarmatian mantle (south-west of the East European platform). Geofizicheskiy Zhurnal, 27(6), 927—939 (in Russian).

Gintov, O.B., Tsvetkova, T.A., Bugaenko, I.V., & Murovskaya, A.V. (2016). Some features of the structure of the mantle of the Eastern Mediterranean and their geodynamic interpretation. Geofizicheskiy Zhurnal, 38(1), 17—29. https://doi.org/10.24028/gzh.0203-3100.v38i1.2016.107719 (in Russian).

Gintov, O.B., Tsvetkova, T.O., Bugaenko, I.V., Zayats, L.M., & Murovska, G.V. (2022). The deep structure of the Trans-European Suture Zone (based on seismic survey and GSR data) and some insights in to its development. Geofizicheskiy Zhurnal, 44(6), 63—87. https://doi.org/10.24028/gj.v44i6.273640 (in Ukrainian).

Golonka, J. (2004). Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics, 381, 235—273. https://doi.org/10.1016/j.tecto.2002.06.004.

Hafkenscheid, E., Wortel, M.J.R., & Spakman, W. (2006) Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. Journal of Geophysical Research, 111, 1—26. https://doi.org/10. 1029/2005JB003791.

International Seismological Center. (2023). Retrieved from http://www.isc.ac.uk.

Jahani, S., Callot, J.-P., Letouzey, J., & de Lamotte, D.F. (2009). The eastern termination of the Zagros Fold-and-Thrust Belt, Iran: structures, evolution, and relationships between salt plugs, folding, and faulting. Tectonics, 28, TC600. https://doi.org/10.1029/2008TC002418.

Keshvari, E., Shomali, Z.H., Tatar, M., & Kaviani, A. (2011). Upper-mantle S-velocity structure across the Zagros collision zone resolved by nonlinear teleseismic tomography. Journal of Seismology, 15, 329—339. https://doi.org/10.1007/s10950-011-9226-y.

Khain, V.E. (2001). Tectonics of continents and oceans. Moscow: Nauchnyy Mir, 604 p. (in Rus¬sian).

Lacombe, O., Mouthereau, F., Kargar, S., & Meyer, B. (2006). Late Cenozoic and Modern Stress Fields in the Western Fars (Iran): Implication for the Tectonic and Kinematic Evolution of Central Zagros. Tectonics, 25, TC1003. https://doi.org/10.1029/2005tc001831.

Lavrentiev, M.M., & Romanov, V.G. (1966). About three linerarizing inverse problems for hyperbolic equations. Doklady AN USSR, 171, 1279—1281 (in Russian).

McQuarrie, N. (2004). Crustal-scale geometry of the Zagros fold-thrust belt, Iran. Journal of Structural Geology, 26 (3), 519—535. https://doi.org/10.1016/j.jsg.2003.08.009.

Mouthereau, F., Lacombe, P., & Vergés, J. (2012). Building the Zagros collisional orogen: Timing, strain distribution and the dynamics of Arabia/Eurasia Plate convergence. Tectonophysics, 532-535, 27—60. https://doi.org/10.1016/j.tecto.2012.01.022.

Paul, A., Hatzfeld, D., Kaviani, A., Tatar, M., & Pequegnat, C. (2010). Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran) (Vol. 330, pp. 5—18). Geol. Soc., London, Spec. Publ. https://doi.org/10.1144/SP330.2.

Simmons, N.A., Myers, S.C., & Johannesson, G. (2011). Global-scale P-wave tomography optimized for prediction of teleseismic and regional travel times for Middle East events: 2. Tomographic inversion. Journal of Geophysical Research, 116, B04305. https://doi.org/10. 1029/2010JB007969.

Shumlyanskaya, L.A., Tripolskiy, A.A., & Tsvetkova, T.A. (2014). Crustal velocity structure effects on the results of seismic tomography of the Ukrainian Shield. Geofizicheskiy Zhurnal, 36(4), 95—117. https://doi.org/10.24028/gzh.0203-3100.v36i4.2014.116030 (in Russian).

Tsvetkova, T.A., & Bugaenko, I.V. (2016). The structure of velocity mantle number of horizons under Phennoscandia according to seismic-tomography data. Geofizicheskiy Zhurnal, 38(1), 57—77. https://doi.org/10.24028/gzh.0203-3100.v38i1.2016.107723 (in Russian).

Tsvetkova, T.A., Bugaenko, I.V., & Zaets, L.N. (2020). Speed structure of the mantle under the Dnieper-Donets Depression and its surroundings. Part I. Geofizicheskiy Zhurnal, 42(2), 71—85. https://doi.org/10.24028/gzh.0203-3100.v42i2.2020.201742 (in Russian).

Tsvetkova, T.A., Bugaenko, I.V., & Zaets, L.N. (2016). Velocity divisibility of the mantle beneath the Ukrainian shield. Geofizicheskiy Zhurnal, 38(4), 75—87. https://doi.org/10.24028/gzh.0203-3100.v38i4.2016.107802 (in Russian).

Tsvetkova, T.A., Shumlyanskaya, L.A., Bu¬ga¬enko, I.V., & Zaets, L.N. (2010). Seismotomography of the East European platform: a three-dimensional P-velocity model of the mantle near Fennoscandia. Part II. Geofizicheskiy Zhurnal, 32(1), 60—77. https://doi.org/10.24028/gzh.0203-3100.v32i1.2010.117570 (in Russian).

Talebi, A., Koulakov, I., Moradi, A., Rahimi, H., & Gerya, T. (2020). Ongoing formation of felsic lower crustal channel by relamination in Zagros collision zone revealed from regional tomography. Scientific Reports, 10, 8224. https://doi.org/10.1038/s41598-020-64946-w.

Talebian, M., & Jackson, J.A. (2004). A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophysical Journal International, 156(3), 506—526. https://doi.org/10.1111/j.1365-246X. 2004.02092.x.

Talebian, M., & Jackson, J. (2002). Offset on the Main Recent Fault of NW Iran and implications for the late Cenozoic tectonics of the Arabia-Eurasia collision zone. Geophysical Journal International, 150(2), 422—439. https://doi.org/10.1046/j.1365-246X.2002.01711.x.

Tavakoli, F., Walpersdorf, A., Authemayou, C., Nankali, H.R., Hatzfeld, D., Tatar, M., Djamou, Y., Nilforoushan, F., & Cotte, N. (2008). Distribution of the right-lateral strike—slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran): Evidence from present-day GPS velocities. Earth and Planetary Science. Letters, 275(3-4), 342—347. https://doi.org/10.1016/j.epsl.2008.08.030.

Torsvik, T.H., Van der Voo, R., Preeden, U., Niocaill, C.M., Steinberger, B., Doubrovine, P.V., van Hinsbergen, D.J.J., Domeier, M., Gaina, C., Tohver, E., Meert, J.G., McCausland, P.J.A., & Cocks, L.R.M. (2012). Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114, 325—368. https://doi.org/10.1016/j.earscirev.2012.06.007.

Volfman,Y.M., Gintov, O.B., Kolesnikova, E.Ya., & Murovskaya, A.V. (2014). Tectonophysical interpretation of earthquake focal mechanisms of the Zagros system. Geodynamics & Tectonophysics, 5(1), 305—319. http://doi.org/10.5800/GT-2014-5-1-0129 (in Russian).

Wells, A.J. (1969). The Crush Zone of the Iranian Zagros Mountains, and its implications. Geological magazine, 106(5), 385—394. https://doi.org/10.1017/S0016756800058787.

Xu, Z., Dilek, Y., Cao, H., Yang, J., Robinson, P., Ma, C., Li, H., Jolivet, M., Roger, F., & Chen, X. (2015). Paleo-Tethyan Evolution of Tibet as Recorded in the East Cimmerides and West Cathaysides. Journal of Asian Earth Sciences, 105, 320—337. http://dx.doi.org/10.1016/j.jseaes. 2015.01.021.

Zaets, L.N. (2011). Speed limits in the mantle of Southeast Asia and Southern China. Geofizicheskiy Zhurnal, 33(1), 62—71. https://doi.org/10.24028/gzh.0203-3100.v33i1.2011.117326 (in Russian).

Zayets, L.N., Kao, D.T., & Tsvetkova, T.A. (2012). Velocity structure of the mantle and abyssal fluids of Southeast Asia. Geofizicheskiy Zhurnal, 34(4), 108—127. https://doi.org/10.24028/gzh.0203-3100.v34i4.2012.116760 (in Russian).

Zaets, L.N., Tsvetkova, T.A., Bugaenko, I.V., & Shumlyanskaya, L.A. (2009). 3-D P-velocity structure of the upper mantle of Indochina and its surroundings. Geofizicheskiy Zhurnal, 31(2), 47—60 (in Russian).

Downloads

Published

2023-10-31

How to Cite

Tsvetkova , T., Gintov, O., Bugaienko, I., & Zaiets, L. (2023). The deep structure of the Zagros mountain system according to Taylor approximation seismic tomography data. Geofizicheskiy Zhurnal, 45(5). https://doi.org/10.24028/gj.v45i5.289104

Issue

Section

Articles