Manifestations of catastrophic Turkish earthquakes February 6, 2023 in Kryvbas

Authors

  • O.V. Kendzera Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine
  • P.G. Pigulevskiy Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine
  • Yu.A. Andrushchenko Main Center of Special Control of the State Space Agency of Ukraine, Kyiv, Ukraine, Ukraine
  • Yu.V. Semenova Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine
  • S.V. Shcherbina Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine
  • V.K. Svystun Dnipropetrovsk geophysical expedition «Dniprogeofizika», Dnipro, Ukraine, Ukraine
  • O.O. Kalinichenko Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine
  • O.I. Liashchuk Main Center of Special Control of the State Space Agency of Ukraine, Kyiv, Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gj.v45i5.289109

Keywords:

Turkish earthquakes, seismicity, geodynamics, hydrogeodynamics, groundwater, rock deformation, frequency characteristics

Abstract

We analyzed the impact of powerful Turkish earthquakes that occurred on February 6, 2023, including a magnitude 7.8 Mw earthquake at 01:17:36 (UTC) in Kahramanmarash—Gaziantep, a magnitude 6.7/6.3 Mw earthquake at 01:28:21 (UTC), and a magnitude 7.5 Mw earthquake at 10:24:50 in Ekinoz—Kahramanmarash, on the territory of Ukraine, particularly in the city of Kryvyi Rih.The study involved the examination of algorithms for processing data recorded at seismic stations belonging to the S.I. Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine and the Main Center for Special Control of t he State Space Agency of Ukraine. The analysis of digital records from these Turkish earthquakes provided ground shaking intensity parameters at the recording points: Odesa and KryvyiRih had intensity levels below 3, Kremenchuk recorded 2, and Poltava and Kyiv registered 1. The resulting isoseismal map illustrates that the attenuation of wave intensity from the Turkish earthquakes depended on the geotectonic structure of the Ukrainian territory through which the seismic vibrations propagated.

The monitoring of the water level in a deep well recorded changes in geodynamic (hydrodeformation) processes following the powerful Turkish earthquakes on February 6, 2023. We found the level of fault-fracture groundwater in the territory of Kryvbaswas affected bythe earthquakes. The calculation of the propagation velocity in the upper part of the lithosphere of the rock deformation front showed a value of ≈19.0 km/min (0.5 km/min).Concurrently, a decrease in the groundwater level by 2—3 cm was recorded, making it possible to conclude that after the earthquake, short-period stretchings of the earth’s crust occurred, both in the zone of the Kryvyi Rih—Kremenchutsky fault and over the Ukrainian Shield, in in general.

The calculated amplitude-frequency characteristics for the geological environment on the territory of Kryvyi Rih revealed that the maximum acceleration of seismic vibrations on the free-soil surface increases relative to bedrock by about 4 times in the frequency range from 1.2 Hz to 1.75 Hz.

References

Besedina, A.N., Vinogradov, E.A., Gorbunova, E.M., Kabychenko, N.V., Svintsov, I.S., Pigu¬lev¬skiy, P.I., Svistun, V.K., & Shcherbina, S.V. (2015). Response of fluid-saturated reservoirs to lunar-solar tides. Part 1. Background parameters of tidal components in ground displacement and groundwater level. Fizika Zemli, (1), 70—79.

Antsiferov, A.V. (Ed.). (2006). Geological-geophysical model of the Kryvorozh-Kremenchug suture zone of the Ukrainian Shield. Kyiv: Naukova Dumka, 197 p. (in Russian).

Antsiferov, A.V. (Ed.). (2011). Geological-geophysical criteria of ore bearing and metallogeny of subduction regions of the Ukrainian Shield. Donetsk: Noulidzh, 285 p. (in Russian).

Gintov, O.B. (2004). Fault zones of the Ukrainian shield. The influence of fault formation processes on the formation of the structure of the earth’s crust. Geofizicheskiy Zhurnal, 26(3), 3—24 (in Russian).

Gordienko, V.V., Gordienko, I.V., Zavgorodnyaya, O.V., Kovachikova, S., Logvinov, I.M., Ta¬ra¬sov, V.M., & Usenko, O.V. (2005). Ukrainian Shield (geophysics, deep processes). Kiev: Korvin press, 210 p. (in Russian).

Gordienko, Yu.O., & Kaplaushenko, V.M. (2017). State of the art information and computer technologies and the network of seismic observations of the MCSC in anticipation of the maximum seismic effect from an earthquake in the near zone. Visnyk ZhDTU. Ser. «Tekhnichni nauky», (3), 61—71 (in Ukrainian).

DBN V.1.1-12:2014. Construction in seismic areas of Ukraine. (2014). Retrieved from https://dbn.co.ua/load/normativy/dbn/1-1-0-1083#load (in Ukrainian).

Drumya, A.V., Korolev, V.A., Moskalenko, T.P., Pronishin, R.S., Pustovitenko, B.G., Sklyar, A.M., Kostyuk, O.P. (1996). Vrancea earthquake of 30 and 31 May 1990 (macroseismic data). In Earthquakes in the USSR in 1990 (pp. 12—19). Moscow: JIPE RAS Publ. (in Russian).

Zakharov, V.V. Martyniuk, A.V., & Tokar, Y.N. (2002). State geological map of Ukraine. Scale 1:200,000. Sheets: M-36-XXXIV (Yellow Waters), L-36-IV (Kryvyi Rig). Explanatory note. Kyiv: Geoinform, 101 p. (in Ukrainian).

Kendzera, O.V., & Pygulevsky, P.G., Andrushchenko, Yu.A. Peculiarities of the seismicity of the territory of Kryvbas. Dopovidi NANU, (6), 87—96. https:doi.org/10.15407/dopovidi2021. 06.087 (in Ukrainian).

Sheremet, E.M. (Ed.). (2011). Kryvyi Rih super-deep well SG-8. Donetsk: Noulidge, 556 p. (in Russian).

Kulchitskiy, V.E. (2014). Valuation of extinction parameters of anisotropic macro-seismic wave intensities. Geofizicheskiy Zhur-nal, 36(2), 138—149. https://doi.org/10.24028/gzh.0203-3100.v36i2.2014.116127 (in Russian).

Pigulevskyy, P.G. (2023). Geotraverse Granite: Odesa—Kryvyi Rih—Pereschepine. Geofizi¬ches¬kiy Zhurnal, 44(6), 88—100. https://doi.org/10.24028/gj.v44i6.273641 (in Ukrainian).

Pigulevskiy, P.G., & Svistun, V.K. (2011). Some results of the groundwater regime automated monitoring in aseismic territories (on the example of the Dnipropetrovsk region). Mineral resources of Ukraine, (2), 42—48 (in Russian).

Pigulevskyy, P.G., Svistun, V.K., Mechnikov, Y.P., Kyrylyuk, O.S., & Lisovoy, Y.V. (2016). Features of disjunctive tectonics of Krivoy Rog iron ore area. Geofizicheskiy Zhurnal, 38(5), 154–—163. https://doi.org/10.24028/gzh.0203-3100.v38i5.2016.107829 (in Ukrainian).

Pigulevskiy, P.G., Svistun, V.K., & Tolkunov, A.P. (2009). Using data from monitoring of hydrodeformation characteristics of groundwater for forecasting tectonic processes in rock massifs. Scientific works of UkrNIMI NASU, (5), 122—131 (in Rus-sian).

Tarasov, V.N., & Boyarkina, I.V. (2014). Moment of inertia of the globe. Omskiy nauchnyy vestnik, (2), 9—11 (in Russian).

Shcherbina, S.V., Pigulevskyy, P.G., Gurova, I.Yu., Amashukeli, T.A., Shumlianska, L.O., Kalinichenko, O.A., Kalitova, I.A., Malytskyy, D.V., Nikulin, V.G., & Verbytskyy, S.T. (2021). A study of the properties of the tectonic structure of the Kryvyi Rih city based on statistical analysis of seismicity. Geofizicheskiy Zhurnal, 43(6), 248—265. https://doi.org/10.24028/gzh.v43i6.251566.

Kruglov, S.S., & Gurskyy, D.S. (Eds.). (2007). Tectonic map of Ukraine. 1:1.000.000. Kyiv: UkrDGRI Publ. House (in Ukrainian).

EduPro Civil Systems, Inc. ProShake 2.0. One-Dimensional, Equivalent Linear Ground Response Analysis. Retrieved from http://www.proshake.com/.

Li, Y., Chen, X., & Chen, L. (2023). The Earth’s Rotation-Related Seismicity as a Precursor to the 2023 Mw 7.8 Gaziantep, Tur-key Earthquake. Preprints, 2023080209. https://doi.org/10.20944/preprints202308.0209.v1.

Nahornyi, V., Pigulevskiy, P., Svystun, V., & Shumlianska, L. (2020). To the question of verification of forecasting methods of earthquakes. XIV Int. Sci. Conf. «Monitoring of Geological Processes and Ecological Condition of the Environment», 10—13 November 2020, Kyiv, Ukraine. Extended Abstracts. https://doi.org/10.3997/2214-4609.202056080.

Pihulevskyi, P.G., Anisimova, L.B., Kalinichenko, O.O., Panteleeva, N.B., & Hanchuk, O.V. (2021). Analysis of natural and technogenic factors on the seismicity of Kryvyi Rih. Journal of Physics: Conference Series, 1840(1), 012018. https://doi.org/10.1088/1742-6596/1840/1/012018.

Pihulevskyi, P.H., Kendzera, O.V., Babiy, K.V., Anisimova, L.B., & Kyryliuk, O.S. (2023). Connection of Kryvbas tectonics with natural and technogenic seismicity. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 5—10.

Sesetyan, K., Stucchi, M., Castelli, V., & Gomez Capera, A.A. (2023). Kahramanmaras — Gaziantep Türkiye M7.7 Earthquake, 6 February 2023 (04:17 GMT+03:00). Large historical earthquakes of the earthquake-affected region: a preliminary report. INGV, Istituto Nazionale di Geofisica e Vulcanologia, Italy. Retrieved from http://www.koeri.boun.edu.tr/sismo/2/en/.

Yoshida, N. (2014). Seismic Ground Response Analysis. Dordrecht: Springer, 365 p. https://doi.org/10.1007/978-94-017-9460-2.

Published

2023-10-31

How to Cite

Kendzera, O., Pigulevskiy, P., Andrushchenko, Y., Semenova, Y., Shcherbina, S., Svystun, V., Kalinichenko, O., & Liashchuk, O. (2023). Manifestations of catastrophic Turkish earthquakes February 6, 2023 in Kryvbas. Geofizicheskiy Zhurnal, 45(5). https://doi.org/10.24028/gj.v45i5.289109

Issue

Section

Articles