Near-surface air temperature in the Ukrainian Carpathians up to the middle of the XXI century by the EURO-CORDEX models

Authors

  • L.V. Palamarchuk Ukrainian Hydrometeorological Institute SES of Ukraine and NAS of Ukraine, Kyiv, Ukraine, Ukraine
  • O.Y. Skrynyk Український гідрометеорологічний інститут ДСНС України та НАН України,Київ, Україна, Ukraine
  • V.V. Putrenko American University Kyiv, Kyiv, Ukraine, Ukraine
  • O.A. Skrynyk National University of Life and Environmental Sciences of Ukraine,Kyiv,Ukraine, Ukraine
  • D.O. Oshurok Hydrometeorological Institute SES of Ukraine and NAS of Ukraine, Kyiv, Ukraine , Ukraine
  • V.P. Sidenko Hydrometeorological Institute SES of Ukraine and NAS of Ukraine, Kyiv, Ukraine, Ukraine
  • Z.M. Kyreieva Hydrometeorological Institute SES of Ukraine and NAS of Ukraine, Kyiv, Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gj.v46i3.299699

Keywords:

surface air temperature, climate indices, EURO-CORDEX, Ukrainian Carpathians, climate projections

Abstract

The results of the assessment of future changes in the thermal regime of surface air in the Ukrainian Carpathians for the period up to 2050 are presented in this article. The assessment was performed on the basis of a set of climate indices (mean annual air temperature, number of frost days - FD, number of summer days - SU and number of tropical days - TR) calculated with high spatial resolution (0.05° × 0.05°) based on daily meteorological observations (1960-2020) and the results of 11 regional climate models of the EURO-CORDEX project (2021-2050). To obtain reliable, unbiased projections of air temperature, the model data were bias-corrected using linear scaling and variance scaling. Climate change was assessed based on the calculation of index increments for the period 2021-2050 relative to the period of the current climate 1991-2020. General trends towards an increase in surface air temperature in the region by the middle of the twenty-first century have been detected. Quantitative indicators of such changes: background increases are in the range of 0.35-0.41 °C (or, conditionally, 0.12-0.14 °С·decade-1) for the RCP4.5 scenario, and 0.53-0.56 °C (0.18-0.19 °С·decade-1) for the RCP8.5 scenario. The maximum increases in average annual temperature compared to the period of the current climate in 1991-2020 are 0.56/0.71 °C, respectively, and are confined to the highlands in the southeastern part of the region, i.e., higher warming rates are expected for the highlands. Changes in the threshold climate indices by the middle of the XXI century will have certain spatial differences: higher summer temperatures (SU, TR) are more likely for the northeastern macroslope and the southeastern part of the study area, and in the cold season (FD) of the year, under both scenarios, air temperatures will increase mainly in the northwestern and southwestern parts of the study region.

References

Balabukh, V.O., & Malytska, L.V. (2017). Assessment of modern changes in the thermal regime in Ukraine. Heoinformatyka, (4), 34―50 (in Ukrainian).

Balabukh, V.A., Malitskaya, L.V., Yagodinets, S.N., Lavrinenko, Ye.N. (2018). Projections of changes in climatic averages and indicators of extreme thermal regime by the middle of the 21st century in Ukraine. Prirodopolzovanie, (1), 97―113 (in Russian).

Zamfirova, M.S., & Khokhlov, V.M. (2020). Air temperature and precipitation regime in ukraine in 2021―2050 by CORDEX model ensemble. Ukrainskyi Hidrometeorolohichnyi Zhurnal, (25), 17—27. https://doi.org/10.31481/uhmj.25 (in Ukrainian).

Lipinskyi, V.M., Diachuk, V.A., & Babichenko, V.M. (2003). Climate of Ukraine. Kyiv: Raevsky Publ. House, 343 s. (in Ukrainian).

Climatic cadastre of Ukraine. (2006). Kyiv: Central Geophysical Observatory, 1 electronic disc (CD-ROM) (in Ukrainian).

Krakowska, S.V., Palamarchuk, L.V., Hnatiuk, N.V., & Shpital, T.M. (2018). Projections of ground temperature and relative humidity in regions of Ukraine until the middle of the XXI century. According to the data of regional climate model ensembles. Heoinformatyka, (3), 62—77. (in Ukrainian).

Sidenko, V.P. (2022). Climatological studies of extreme weather conditions, events and phenomena in Ukraine and the world. Hidrolohiia, hidrokhimiia i hidroheolohiia, (2), 53—70. https://doi/org/10.17721/2306-5680.2022.2.5 (in Ukrainian).

Skrynyk, O.A., Boichuk, D.O., & Sidenko, V.P. (2019). Detection and removal of inhomogeneity in time series of climatological variables. Hidrolohiia, hidrokhimiia i hidroheolohiia, (2), 88—100 (in Ukrainian).

Khokhlov, V.M., & Yermolenko, N.S. (2015). Future climate change and it`s impact on precipitation and temperature in Ukraine. Ukrainskyi Hidrometeorolohichnyi Zhurnal, (16), 76―82 (in Ukrainian).

Aguilar, E. (2019). INDECIS Quality Control Software and Manual: INQC, beta version. Retrieved from http://www.indecis.eu/docs/Deliverables/Deliverable_3.1.a.pdf [Accessed December 14, 2023].

Benichou, P., Le Breton, O. (1987). AURELHY: une method d’analyse utilisant le relief pour les besoins de l’hydrométéorologie. In Deuxièmes Journées Hydrologiques de l’ORSTOM а Montpellier (Colloqueset Séminaires) (pp. 299—304). Paris: ORSTOM.

Beniston, M., Stephenson, D.B., Christensen, O.B., Ferro, C.A.T., Frei, C., Goyette, S., Halsnaes, K., Holt, T., Jylhä, K., Koffi, B., Palutikof, J., Schöll, R., Semmler, T., & Woth, K. (2007) Future extreme events in European climate: an exploration of regional climate model projections. Climate Change, 81, 71—95. https://doi.org/10.1007/s10584-006-9226-z.

Birsan, M.V., Dumitrescu, A., Micu, D.M., & Cheval, S. (2014). Changes in annual temperature extremes in the Carpathians since AD 1961. Natural Hazards, 74, 1899—1910. https://doi.org/10.1007/s11069-014-1290-5.

Boychenko, S., & Maidanovych, N. (2023). Semi-empirical model of the spatiotemporal surface temperature distribution on the plain part of Ukraine. Geofizicheskiy Zhurnal, 45(2), 63—76. https://doi.org/10.24028/gj.v45i2.278328.

Casanueva, A., Herrera, S., Iturbide, M., Lange, S., Jury, M., Dosio, A., Maraun, D., & Gutiérrez, J.M. (2020). Testing bias adjustment methods for regional climate change applications under observational uncertainty and resolution mismatch. Atmospheric Science Letters, 21, 1—12. https://doi.org/10.1002/asl.978.

Christensen, J.H. (2013). Regional climate science: Findings of IPCC AR5 WG1. International Conference on Regional Climate CORDEX, 4―7 Nov. 2013, Brussels.

Cornes, R., van der Schrier, G., van den Besselaar, E.J.M., & Jones, P.D. (2018). An Ensemble Version of the E-OBS Temperature and Precipitation Datasets. Journal of Geophysical Research: Atmospheres, 123. https://doi.org/10.1029/2017JD028200.

Dosio, A., Lennard, C., & Spinoni, J. (2022). Projections of indices of daily temperature and precipitation based on bias-adjusted CORDEX-Africa regional climate model simulations. Climatic Change, 170, 13. https://doi.org/10.1007/s10584-022-03307-0.

Dumitrescu, A., Bojariu, R., Birsan, M.-V., Marin, L., & Manea, A. (2015). Recent climatic changes in Romania from observational data (1961—2013). Theoretical and Applied Climatology, 122, 111—119. https://doi.org/10.1007/s00704-04-1290-0.

Gado, T.A., Mohameden, M.B. & Rashwan, I.M.H. (2022). Bias correction of regional climate model simulations for the impact assessment of the climate change in Egypt. Environmental Science and Pollution Research, 29, 20200—20220. https://doi.org/10.1007/s11356-021-17189-9.

Giorgi, F. (2005). Climate change prediction. Climatic Change, 73, 239—265. https://doi.org/10. 1007/s10584-005-6857-4.

Giorgi, F. (2019). Thirty years of regional climate modeling: where are we and where are we going next? Journal of Geophysical Research: Atmospheres, 124, 5696—5723. https://doi.org/10. 1029/2018JD030094.

Guijarro, J.A. (2023). Homogenization of climatic series with Climatol. Version 4.0.7. Guide. Retrieved from https://www.climatol.eu/climatol4-en.pdf [Accessed December 14, 2023].

IPCC. (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri, R.K, Reisinger, A. (Eds.). Geneva, Switzerland, 104 p.

IPCC. (2013). Climate Change 2013: the physical science basis. In Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, M. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge United Kingdom and New York, 1535 p. Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.

IPCC. (2015). Workshop Report of the Intergovernmental Panel on Climate Change Workshop on Regional Climate Projections and their Use in Impacts and Risk Analysis Studies. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M. (Eds.). IPCC Working Group I Technical Support Unit, University of Bern, Bern, Switzerland, p. 171. Retrieved from https://archive.ipcc.ch/pdf/supporting-material.

IPCC (2021). Summary for Policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 3―32). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/9781009157896.001.

Jakob, D. Petersen, J., Eggert, B., & Alias, A. (2014). EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional Environmental Change, 14(2), 563―578. https://doi.org/10.1007/s10113-013-0499-2.

Jin, H., Li, X., Frauenfeld, O.W., Zhao, Y., Chen, C., Du, R., Du, J., & Peng, X. (2022). Comparisons of statistical downscaling methods for air temperature over the Qilian Mountains. Theoretical and Applied Climatology, 149, 893—896. https://doi.org/10.1007/s00704-022-04081-w.

Kis, A., Pongracz, R., & Bartholy, J. (2017). Multi-model analysis of regional dry and wet conditions for the Carpathian region. International Journal of Climatology, 37, 4543—4560. https://doi.org/10.1002/joc.5104.

Krakovska, S., Balabukh, V., Chyhareva, A., Pysarenko, L., Trofimova, I., & Shpytal, T. (2021). Projections of regional climate change in Ukraine based on multi-model ensembles of Euro-CORDEX. EGU general assembly 2021, online, 19—30 Apr 2021, EGU21-13821. https://doi.org/10.5194/egusphere-egu21-13821.

Lange, S. (2019). Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geoscientific Model Development, 12, 3055—3070. https://doi.org/10.5194/gmd-12-3055-2019.

Mishra, V., Bhatia, U., & Tiwari, A.D. (2020). Bias-corrected climate projections for South Asia from Coupled Model Intercomparison Project-6. Scientific Data, 7, 338. https://doi.org/10. 1038/s41597-020-00681-1.

Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A., & Ramirez-Villegas, J. (2020). High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Scientific Data, 7. https://doi.org/10.1038/s41597-019-0343-8.

Schulzweida, U. (2020). CDO User Guide (2.0.0). Zenodo. https://doi.org/10.5281/zenodo.5614769.

Shevchenko, O., Lee, H., Snizhko, S., & Mayer, H. (2014). Long-term analysis of heat waves in Ukraine. International Journal of Climatology, 34, 1642―1650. https://doi.org/10.1002/joc.3792.

Simon, C., Kis, A., & Torma, C.Z. (2023). Temperature characteristics over the Carpathian Basin-projected changes of climate indices at regional and local scale based on bias-adjusted CORDEX simulations. International Journal of Climatology, 43(8), 3552—3569. https://doi.org/10.1002/joc.8045.

Skrynyk, O., Sidenko, V., Aguilar, E., Guijarro, J., Skrynyk, O., Palamarchuk, L., Oshurok, D., Osypov, V., & Osadchyi, V. (2023). Data quality control and homogenization of daily precipitation and air temperature (mean, max and min) time series of Ukraine. International Journal of Climatology, 43(9), 4166—4182. https://doi.org/10.1002/joc.8080.

Spinoni, J., Szalai, S., Szentimrey, T., Lakatos, M., Bihari, Z., Nagy, A., Németh, A., Kovacs, T., Mihic, D., Dacic, M., Petrovic, P., Kržič, A., Hiebl, J., Auer, I., Milkovic, J., Štepanek, P., Zahradnícek, P., Kilar, P., Limanowka, D., Pyrc, R., Cheval, S., Birsan, M.-V., Dumitrescu, A., Deak, G., Matei, M., Antolovic, I., Nejedlík, P., Štastn´y, P., Kajaba, P., Bochnícek, O., Galo, D., Mikulova, K., Nabyvanets, Y., Skrynyk, O., Krakovska, S., Gnatiuk, N., Tolasz, R., Antofie, T., & Vogt, J. (2015). Climate of the Carpathian region in the period 1961—2010: climatologies and trends of 10 variables. International Journal of Climatology, 35, 1322—1341. https://doi.org/10.1002/joc.4059.

Szentimrey, T., & Bihari, Z. (2014). Manual of Interpolation Software MISH v1.03. Hungarian Meteorological Service. Budapest, Hungary.

Tabony, R.C. (1985). Relations between minimum temperature and topography in Great Britain. Journal of Climatology, 5, 503―520. https://doi.org/10.1002/joc.3370050504.

Torma, C.Z., & Kis, A. (2022). Bias-adjustment of high-resolution temperature CORDEX data over the Carpathian region: Expected changes including the number of summer and frost days. International Journal of Climatology, 42(12), 6631—6646. https://doi.org/10.1002/joc.7654.

Published

2024-06-28

How to Cite

Palamarchuk, L., Skrynyk, O., Putrenko, V., Skrynyk, O., Oshurok, D., Sidenko, V., & Kyreieva, Z. (2024). Near-surface air temperature in the Ukrainian Carpathians up to the middle of the XXI century by the EURO-CORDEX models . Geofizičeskij žurnal, 46(3). https://doi.org/10.24028/gj.v46i3.299699

Issue

Section

Articles