Reconstruction of the deep process based on the analysis of the magmatic rocks composition (on the example of the Osnytsk and Buky complexes of the Volyn megablock of the Ukrainian Shield)
DOI:
https://doi.org/10.24028/gj.v47i1.309811Keywords:
Ukrainian Shield, Paleoproterozoic, Osnytsko-Mikashevytsky volcano-plutonic belt, continental margin, juvenile rocksAbstract
The article summarizes the data on the composition of the Osnitsk and Buky magmatic complexes within the Osnytsko-Mikashevytsky volcano-plutonic belt and Volyn megablock, Ukrainian Shield. The РT-conditions for the melts formation, from which, the rocks of the specified complexes crystallized were determined. This makes it possible to determine the depth of the thermal asthenosphere from where the melts came from the composition of the fluids accompanying the differentiation and to outline the probable tectonic setting under which they were formed.
Analysis of both complex compositions makes it possible to assume basalts and magnesianandesites may appear in the melting layer at Р~1.2÷1.5 GPa, and Т>1400 °С. Here were mixed ultrabasic melts formed with the participation of carbonate fluids from the deep source, and andesite-basalts, formed with the presence of water fluids with chlorine. These could have arisen due to the melting of the crust, which subducted into the layer of partial melting at the depth of about 50 km. Granitoids are developed within the Osnytsko-Mikashevytsky volcano-plutonic belt, indicating a sell of melting in the crust, which is at least 40 km thick.
Layering in the massifs located near the surface was not a result of crystallization differentiation in the magmatic cell, but a result of the multiple income of melt from melting layers during periodic tectonic movements.
The composition of magmatic complexes formed 2.0―1.97 billion years ago does not contradict the existing scheme of the Osnytsko-Mikashevytsky volcano-plutonic belt formation as a result of Fennoscandia subduction under Sarmatia, but makes it mandatory to include advective link ― the plume process in the adjacent territory.
References
Bogatikov, O.A., Kovalenko, V.I., & Sharkov, E.V. (2010). Magmatism, tectonics and geodynamics of the Earth: Connection in time and space. Moscow: Nauka, 606 p. (in Russian).
Burakhovych, Т.K., & Kushnir, А.M. (2023). History, current status and future prospets of geoelectromagnetic research in Ukraine. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 1(100), 58―66. https://doi.org/10.17721/1728-2713.100.07 (in Ukrainian).
Burakhovych, T.K., & Kushnir, A.M. (2024). Geoelectrical inhomogeneities of the lithosphere of the Pripyat-Dnieper-Donetsk basin along the GEORIFT 2013 profile. Geofizychnyi Zhurnal, 46(3), 32―49. https://doi.org/10.24028/gj.v46i3.299169 (inUkrainian).
Gintov, O.B. (2019). Plate-plume tectonics as an integrated mechanism of geodynamic development of the tectonosphere of Ukraine and adjacent regions. Geofizicheskiy Zhurnal, 41(6), 3―34. https://doi.org/10.24028/gzh.0203-3100.v41i6.2019.190064 (inRussian).
Gintov, O.B. (2014). Scheme of periodization of faulting stages in the Earth’s crust of the Ukrainian shield ― new data. Geofizicheskiy Zhurnal, 36(1), 3―18. https://doi.org/10.24028/gzh. 0203-3100.v36i1.2014.116145 (in Russian).
Gordienko, V.V. (2007). Advection-polymorphic hypothesis of processes in the tectonosphere. Kyiv: Korvin press, 172 p. (in Russian).
Gordienko, V.V., & Usenko, O.V. (2003). Deep processes in the tectonosphere of Ukraine. Kyiv: Publ. IGF NAS of Ukraine, 147 p. (in Russian).
Kadik, A.A., Lukanin, O.A., & Portnyagin, A.L. (1990). Magma formation during ascending movement of mantle matter: temperature regime and composition of melts formed during adiabatic decompression of mantle ultrabasites. Geochemistry, (9), 1263―1276 (in Russian).
Kostenko, M.M. (2019). Metallogenic features and prospects for ore bearing of basic dike complexes of the Volyn megablock of the Ukrainian Shield. Collection of scientific papers of the UkrSDRI, (3-4), 9—23 (in Ukrainian).
Kotelnikova, Z.A., & Kotelnikov, A.R. (2002). Synthetic NaF-containing fluid inclusions. Geochemistry, (6), 657―666 (in Russian).
Makarenko, I., Savchenko, O., Dererova, J., Murovska, A., Starostenko, V., Bielik, M., & Legostaeva, O. (2023). Depth structure of the Transcarpathian Depression (Ukrainian part) according to density modeling data. Geofizicheskiy Zhurnal, 45(4), 43―83. https://doi.org/ 10.24028/gj.v45i4.286285 (in Ukrainian).
Mychak, S.V., Usenko, O.V., Makarenko, I.B., & Savchenko, O.S. (2024). Proterozoic stages of deformation of the western part of the Ukrainian Shield: faulting, magmatism and density heterogeneity of the Earth’s crust. Collection of materials of the scientific conference «Geological structure and history of geological development of the Ukrainian Shield (to the 100th anniversary of the birth of Academician of the National Academy of Sciences of Ukraine M.P. Shcherbak)» (pp. 270―274). Kyiv: Publ. M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the National Academy of Sciences of Ukraine. https://doi.org/10.30836/gbhgd.2024.56 (in Ukrainian).
Shcherbakov, I.B. (Ed.). (1990). Petrology, geochemistry and ore-bearing of intrusive granitoids of the Ukrainian Shield. Kiev. Naukova Dumka, 236 p. (in Russian).
Purtov, V.K., Anfilogov, V.N., & Yegorova, L.G. (2002). Interaction of basalt with chloride solutions and the mechanism of formation of acidic melts. Geochemistry, (10), 1084―1097 (in Russian).
Ryabchikov, I.D., Orlova, G.P., Kovalenko, V.I., Choporov, D.Ya., Solovova, I.P., & Muravitskaya, G.N. (1983). Experimental study of interaction of fluid with micaceous spinel lherzolite at high temperatures and pressures. Doklady AN SSSR. Ser. Geol., (3), 38―46 (in Russian).
Sobolev, A.V., Krivolutskaya, N.A., & Kuzmin, D.V. (2009a). Petrology of parental melts and mantle sources of magmas of the Siberian trap province. Petrology, 17(3), 276―310 (in Russian).
Sobolev, A.V., Sobolev, S.V., Kuzmin, D.V., Malich, K.N., & Petrunin, A.G. (2009б). The mechanism of formation of Siberian meimechites and the nature of their connection with traps and kimberlites. Geology and Geophysics, 50(12), 1293―1334 (in Russian).
Spetsius, Z.V., & Serenko, V.P. (1990). Composition of the continental upper mantle and lower crust beneath the Siberian platform. Moscow: Nauka, 271 p. (in Russian).
Usenko, O.V. (2019). Reflection of sequence of geodynamic processes in geological structure of the Bug area. Geofizicheskiy Zhurnal, 41(3), 78―95. https://doi.org/10.24028/gzh.0203-3100.v41i3.2019.172425 (in Russian).
Usenko, O.B. (2017). Periodization and specific features of deep processes in Precambrian by example of the Ukrainian shield. Geofizicheskiy Zhurnal, 39(6), 41―83. https://doi.org/ 10.24028/gzh.0203-3100.v39i6.2017.116366 (in Russian).
Usenko, O.B. (2024). Thermodynamic conditions of granitization and metamorphism of rocks in the northwestern part of the Ukrainian shield. Geofizychnyi Zhurnal, 46(2), 34―52. https://doi.org/10.24028/gj.v46i2.294984 (in Ukrainian).
Usenko, O.V. (2014). Formation of melts: geodynamic process and physicochemical interactions. Kiev: Naukova Dumka, 240 p. (in Russian).
Tsvetkova, T.A., & Bugaenko, I.V. (2012). Seismotomography of the mantle under the East European platform: mantle velocity boundaries. Geofizicheskiy Zhurnal, 34(5), 161―172. https://doi.org/10.24028/gzh.0203-3100.v34i5. 2012.116672 (in Russian).
Shumlyanskyy, L.V. (2012). Petrology and geochronology of rock complexes of the north-west region of the Ukrainian Shield and its western slope. Extended Doctor’s thesis. Kyiv, 489 p. (in Ukrainian).
Shumlyanskyy, L.V., Mazur, M.D., Zinchenko, O.V., & Kryvdyk, S.G. (2009). Isotopic (U-Pb by zircons) age and geological setting of the Kishin massif and rocks of its border (northwestern region of the Ukrainian Shield). Mineralogical Journal, 31(2), 83―91 (in Ukrainian).
Shumlyanskyy, L.V., Stepanyuk, L.M., Claesson, S., Rudenko, K.V., & Becker, A.Yu. (2018).U-Pb on zircon and monazite geochronology of granites of the Zhitomir and Sheremetiv complexes, the north-western region of the Ukrainian Shield. Mineralogical Journal, 40(2), 63―85. https://doi.org/10.15407/mineraljournal.40.02.063 (in Ukrainian).
Shcherbak, N.P., Artemenko, G.V., Lesnaya, I.M., Ponomarenko, A.N., & Shumlyanskiy, L.V. (2008). Geochronology of the Early Precambrian of the Ukrainian Shield. Proterozoic. Kyiv: Naukova Dumka, 240 p. (in Russian).
Shcherbakov, I.B. (2005). Petrology of the Ukrainian Shield. Lviv: ZuKTs, 366 p. (in Russian).
Best, M.G. (2003). Igneous and Metamorphic Petrology, 2nd Edition. Wiley-Blackwell, 752 p.
Bogdanova, S., Gorbatschev, R., Grad, M., Guterch, A., Janik, T., Kozlovskaya, E., Motuza, G., Skridlaite, G., Starostenko, V., Taran, L., & EUROBRIDGE and POLONAISE Working Groups. (2006). EUROBRIDGE: new insight into the geodynamic evolution of the East European Craton. In D.G. Gee, R.A. Stephenson (Eds.), European Lithosphere Dynamics (Vol. 32, pp. 599—628). Geol. Soc., London, Memoirs. https://doi.org/10.1144/GSL.MEM. 2006.032.01.3.
Bogdanova, S., Gintov, O.B., Kurlovich, D.M., Lubnina, N.V., Nilsson, M., Orlyuk, M.I., Pashkevich, I.K., Shumlyanskyy, L.V., & Starostenko, V.I. (2013). Late Palaeoproterozoic mafic dyking in the Ukrainian Shield of Volgo-Sarmatia caused by rotation during the as-sembly of supercontinent Columbia (Nuna). Lithos, 174, 196—216. https://doi.org/10.1016/j.lithos.2012.11.002.
Bogdanova, S.V., Gorbatschev, R., & Garetsky, R.G. (2016). EUROPE|East European Craton. In Reference Module in Earth Systems and Environmental Sciences (pp. 1—18). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10020-X.
Boyd, F.R., Pearson, D.G., Hoal, K.O., Hoal, B.J., Nixon, P.H., Kingston, M.J., & Mertzman, S.A. (2004). Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relations. Lithos, 77(1-4), 573―592. https://doi.org/10.1016/j.lithos.2004.03.010.
Carlson, R.W., Pearson, D.G., & James, D.E. (2005). Physical, chemical and chronological characteristics of continental mantle. Reviews of Geophysics, 43, RG1001. https://doi.org/10.1029/2004RG000156.
Сondie, K.C. (2011). Earth and Evolving Planetary System. Elsеvier, 574 p.
Créon, L, Delpech, G., Rouchon, V., & Guyot, F. (2017). Slab-derived metasomatism in the Carpathian-Pannonian mantle revealed by investigations of mantle xenoliths from the Bakony-Balaton Highland Volcanic Field. Lithos, 286-287, 534—552. http://dx.doi.org/10.1016/j.lithos.2017.06.004.
Dawson, J.B. (2002). Metasomatism and partial melting in upper-mantle peridotite xenoliths from the Lashaine volcano, Northern Tanzania. Journal of Petrology, 43(9), 1749—1777. https://doi.org/10.1093/petrology/43.9.1749.
Green, D.Н., Falloon, T.J., Eggins, S.M., & Yaxley, G.M. (2001). Primary magmas and mantle temperatures. European Journal of. Mineralogy, 13, 437—451. https://doi.org/10.1127/0935-1221/2001/0013-0437.
Green, D.Н., Hibberson, W.О., Kovács, I., & Rosenthal, А. (2010). Water and its influence on the lithosphere-asthenosphere boundary. Nature, 467, 448—452. https://doi.org/10.1038/nature09369.
Green, T.H. (1982). Anatexis of mafic crust and high pressure crystallization of andesite. American Society of Mechanical Engineers (Paper), 465―487.
Griffin, W., Belousova, E., O’Neill, C., O’Reilly, S.Y., Malkovets, V., Pearson, N., Spetsius, S., & Wilde, S. (2014). The world turns over: Hadean-Archean crust-mantle evolution. Lithos, 189, 2—15. https://doi.org/10.1016/j.lithos.2013.08.018.
Gudfinnsson, G.H., & Presnal, D.C. (2005). Continuоus gradations among primary carbonatic, melilitic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3―8 GPa. Journal of Petrology, 46, 1645—1659. https://doi.org/10.1093/petrology/egi029.
Holland, H.D. (2002). Volcanic gases, black smokers, and the great oxidation event. Geochimica et Cosmochimica Acta, 66(21), 3811—3826. https://doi.org/10.1016/S0016-7037(02)00950-X.
Ionov, D.A., Bodinier, J.-L., Mukasa, S.B., & Zanetti, A. (2002). Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenolits from Spitsbergen in the context of numerical modeling. Journal of Petrology, 43(12), 2219—2259. https://doi.org/10.1093/petrology/43.12.2219.
Ionov, D.A., Carlson, R.W., Doucet, L.S., Golovin, A.V., & Oleinikov, О.B. (2015). The age and history of the lithospheric mantle of the Siberian craton: Re-Os and PGE study of peridotite xenoliths from the Obnazhennaya kimberlite. Earth and Planetary Science Letters, 428, 108—119. https://doi.org/10.1016/j.epsl. 2015.07.007.
Ivanov, A.V., Mukasa, S.B., Kamenetsky, V.S., Ackerson, M., Demonterova, E.I., Pokrovsky, B.G., Vladykin, N.V., Kolesnichenko, M.V., Litasov, K.D., & Zedgenizov, D.A. (2018). Volatile concentrations in olivine-hosted melt inclusions from meimechite and melanephelinite lavas of the Siberian Traps Large Igneous Province: Evidence for flux-related high-Ti, high-Mg magmatism. Chemical Geology, 483, 442—462. https://doi.org/10.1016/j.chemgeo. 2018.03.011. https://www.sciencedirect.com/science/journal/00092541.
Janik, T., Starostenko, V., Aleksandrowski, P., Yegorova, T., Czuba, W., Środa, P., Murovskaya, A., Zayats, K., Mechie, J., Kolomiyets, K., Lysynchuk, D, Wójcik, D, Omelchenko, V, Legostaieva, O., Głuszynski, A., Tolkunov, A., Amashukeli, T., Gryn, D., & Chulkov, S. (2022). Lithospheric Structure of the East European Craton at the Transition from Sarmatia to Fennoscandia Interpreted from the TTZ-South Seismic Profile (SE Polandto Ukraine). Minerals, 12(2), 112. https://doi.org/10.3390/min12020112.
Jones, A.G., Plomerova, J., Korja, T., Sodoudi, F., & Spakman, W. (2010). Europe from the bottom up: A statistical examination of the central and northern European lithosphere-asthenosphere boundary from comparing seismological and electromagnetic observations. Lithos, 120(1-2), 14—29. https://doi.org/10.1016/j.lithos.2010.07.013.
Kaeser, B., Kalt, A., & Pettke, T. (2006). Evolution of the Lithospheric Mantle beneath the Marsabit Volcanic Field (Northern Kenya): Constraints from Textural, P-T and Geochemical Studies on Xenoliths. Journal of Petrology, 47(11), 2149—2184. https://doi.org/10.1093/petrology/egl040.
Kamenetsky, M.B., Sobolev, A.V., Kamenetsky, V.S., Maas, R., Danyushevsky, L.V., Thomas, R., Pokhilenko, N.P., & Sobolev, N.V (2004). Kimberlite melts rich in alkali chlorides and carbonates: A potent metasomatic agent in the mantle. Geology, 32(10), 843—848. https://doi.org/10.1130/G20821.1.
Klein-Ben David, O., Izraeli, E.S., Hauri, E., & Navon, O. (2007). Fluid inclusions in diamonds from the Diavic mine (Canada) and the evolution of diamond- forming fluids. Geochimica et Cosmochimica Acta, 74(3), 723―744. https://doi.org/10.1016/j.gca.2006.10.008.
Lay, T., Garnero, E.J., & Williams, Q. (2004). Partial melting in a thermo-chemical boundary layer at the base of the mantle. Physics of the Earth and Planetary Interiors, 146, 441—467. https://doi.org/10.1016/j.pepi.2004.04.004.
Lesher, C.E., Pickering-Witter, J., Baxter, G., & Walter, M. (2003). Melting of garnet peridotite: Effects of capsules and thermocouples, and implications for the high-pressure mantle solidus. American Mineralogist, 88(8-9), 1181—1189. https://doi.org/10.2138/am-2003-8-901.
Mężyk, M., Malinowski, M., & Mazur, S. (2021). Structure of a diffuse suture between Fennoscandia and Sarmatia in SE Poland based on interpretation of regional reflection seismic profiles supported by unsupervised clustering. Precambrian Research, 358, 106176. https://doi.org/10.1016/j.precamres.2021.106176.
O’Reilly, S.Y., & Griffin, W.L. (2010). The continental lithosphere-asthenosphere boundary: Can we sample it? Lithos, 120, 1—13. https://doi.org/10.1016/j.lithos.2010.03.016.
Pavlenkova, G.A., & Pavlenkova, N.I. (2006). Upper mantle structure of the Northern Eurasia from peaceful nuclear explosion data. Tectonophysics, 416(1-4), 33—52. https://doi.org/10.1016/j.tecto.2005.11.010.
Ryabchikov, I.D., Solovova, I.P., Ntaflos, Th., Büchl, A., & Tikhonenkov, P.I. (2001). Subalkaline picrobasalts and plateau basalts from Putorana plateau (Siberian CFB province). II. Melt inclusion chemistry, composition of «primary» magmas and P-T regime at the base of superplume. Geokhimiya, (5), 484—497.
Shumlyanskyy, L.V. (2014). Geochemistry of the Osnitsk-Mikashevichy Volcano plutonic Complex of the Ukrainian Shield. Geochemistry International, 52, 912—924. https://doi.org/10.1134/S0016702914110081.
Shumlyanskyy, L., Ernst, R.E., Albekov, A., Soderlund, U., Wilde, S.A., & Bekker, A. (2021). The early Statherian (ca. 1800—1750 Ma) Prutivka-Novogol large igneous province of Sarmatia: Geochronology and implication for the Nuna/Columbia supercontinent. Precambrian Research, 358, 106185. https://doi.org/10.1016/j.precamres.2021.106185.
Shumlyanskyy, L., Ernst, R., Söderlund, U., Billström, K., Mitrokhin, O., & Tsymbal, S. (2016). New U-Pb ages for mafic dykes in the Northwestern region of the Ukrainian shield: coeval tholeiitic and jotunitic magmatism. Geologiska Föreningens Förhandlingar, 138(1), 79—85. https://doi.org/10.1080/11035897.2015.1116602.
Shumlyanskyy, L., Hawkesworth, C., Billstrom, K., Bogdanova, S., Mytrokhyn, O., Romer, R., Dhuime, B., Claesson, S., Ernst, R., Whitehouse, M., & Bilan, O. (2017). The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian shield: New U-Pb ages and Hf isotopes in zircon. Precambrian Research, 292, 216—239. https://doi.org/10.1016/j.precamres.2017.02.009.
Starostenko, V., Janik, T., Yegorova, T., Czuba, W., Środa, P., Lysynchuk, D., Aizberg, R., Garetsky, R., Karataev, G., Gribik, Y., Farfuliak, L., Kolomiyets, K., Omelchenko, V., Komminaho, K., Tiira, T., Gryn, D., Guterch, A., Legostaeva, O., Thybo, H., & Tolkunov, A. (2018). Lithospheric structure along wide-angle seismic profile GEORIFT 2013 in Pripyat-Dnieper-Donets Basin (Belarus and Ukraine). Geophysical Journal International, 212, 1932—1962. https://doi.org/10.1093/gji/ggx509.
Takahashi, E. (1986). Melting of a dry peridotite KLB-1 up to 14 GPa implications on the origin of peridotite upper mantle. Journal of Geophysical Research: Solid Earth, 91(B9), 9367—9382. https://doi.org/10.1029/JB091iB09p09367.
Walter, M.J. (2005). Melt Extraction and Compositional Variability in Mantle Lithosphere. In R.W. Carlson (Ed.), The Mantle and Core (pp. 363—394). Elsevier.
Walter, M.J. (1998). Melting of garnet peridotite and the origin of komatiiteand depleted lithosphere. Journal of Petrology, 39, 29—60. https://doi.org/10.1093/petroj/39.1.29.
Wyllie, P.J. (1977). Effects of Н2О and СО2 on magma generation in the crust and mantle. Journal of the Geological Society, 134, 215—234. https://doi.org/10.1144/gsjgs.134.2.0215.
Wyllie, P.J. (1995). Experimental petrology of upper mantle materials, process and products. Journal of Geodinamics, 20(4), 429―468. https://doi.org/10.1016/0264-3707(95)00023-3.
Wyllie, P.J., & Ryabchikov, I.D. (2000). Volatile components, magmas, and critical fluids in upwelling mantle. Journal of Petrology, 41(7), 1195—1205. https://doi.org/10.1093/petrology/41.7.1195.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Olga Usenko

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).