Crustal heat flow in Ukraine
DOI:
https://doi.org/10.24028/gj.v47i1.311435Keywords:
radiogenic heat generation of crustal rocks of Ukraine, crustal heat flowAbstract
Information on the network density of heat flow measurements with the authors’ participation in Ukraine’s territory and beyond is presented. Data of such quality can be effectively used to control the schemes of deep processes in the tectonosphere and the origin of mineral deposits. We provide maps of heat flow distribution and concentration of geothermal resources. Combined geological and geophysical knowledge of Ukraine’s territory allows us to proceed to a more in-depth study of the thermal field. The main objective was to calculate the crustal heat flow due to radiogenic heat generation throughout the country, which has not been done before. We used information on the distribution of P-wave seismic velocities along the DSS (deep seismic study) profiles of about 12,000 km total length. The error in determining the seismic wave velocity was calculated by the velocity difference at the profiles’ intersections or overlaps. On average, the velocity difference is about 0.2 km/s. Accordingly, the error of velocity determination is about 1.4 km/s. Such an error allows us to draw isolines of the crust heat flow through 4 mW/m2. Variants of velocity and heat generation correlation for different crustal rocks are presented. Together with mapping crustal heat flow distribution based on the DSS data, the Moho depth was also plotted considering the error in determining this parameter. Regional crustal heat flow anomalies were identified as being associated with the geological evolution of individual regions. In the platform part of Ukraine, we detected heat generation anomalies related to the anomalies in the upper mantle. The results allow us to proceed with determining the heat flow from the mantle on the territory of Ukraine.
References
Baranova, E.P., Yegorova, T.P., & Omelchenko, V.D. (2011). Detection of a waveguide in the basement of the northwestern shelf of the Black Sea based on the results of reinterpretation of DSS data for profiles 26 and 25. Geofizicheskiy Zhurnal, 33(6), 15―28. https://doi.org/10.24028/gzh.0203-3100.v33i6.2011.116790 (in Russian).
Belousov, V.V. (1982). Transition zones between continents and oceans. Moscow: Nedra, 152 p. (in Russian).
Global Heat Flow Database: Release 2024. (2024). Retrieved from https://datapub.gfz-potsdam.de/download/10.5880.FIDGEO.2024.014-VEueRf/GHFDB-AG_et-al_2024_release_data_description.pdf
Gordienko, V.V. (2022). About geological theory. Geofizicheskiy Zhurnal, 44(2), 68―92. https://doi.org/10.24028/gj.v44i2.256266.
Gordienko, V.V. (2005). On the connections between gravitational, magnetic and stationary thermal fields on the Ukrainian Shield. Geofizicheskiy Zhurnal, 27(5), 837―843 (in Russian).
Gordienko, V.V. (2017). Thermal processes, geodynamics, deposits. Retrieved from https://ivangord2000.wixsite.com/tectonos.
Gordienko, V.V., Gordienko, I.V., Zavgorodnyaya, O.V., Logvinov, I.M., Tarasov, V.N., & Usenko, O.V. (2004). Geothermal atlas of Ukraine. Kiev: Korvin Press, 60 p. (in Russian).
Gordienko, V.V., & Gordienko, I.V. (2024). Heat flow in the Eurasian, North American and Atlantic regions. Geology and Mineral Resources of World Ocean, (1), 20―32 (in Ukrainian).
Gordienko, V., & Gordienko, I. (2023). Thermal models of the continents and oceans tectonosphere. NCGT Journal, (2), 113―130.
Gordienko, V.V., Gordienko, I.V., Zavgorodnyaya, O.V., Kovachikova, S., Logvinov, I.М., Tarasov, V.N., & Usenko, O.V. (2005). Ukrainian Shield (geophysics, deep processes). Кiev: Korwіn Press, 210 p. (in Russian).
Gordienko, V.V., Gordienko, I.V., Zavgorodnyaya, O.V., & Usenko, O.V. (2002). Thermal field of the Ukrainian territory. Kiev: Znannya, 168 p. (in Russian).
Gordienko, V.V., Gordienko, I.V., Zavgorodnyaya, O.V., Kovachikova, S., Logvinov, I.M., Pek, J., Tarasov, V.N., & Usenko, O.V. (2006). Dnieper-Donets Basin (geophysics, deep processes). Kiev: Korwin Press, 143 p. (in Russian).
Gordienko, V.V., Gordienko, I.V., Zavgorodnyaya, O.V., Kovachikova, S., Logvinov, I.M., Tarasov, V.N., & Usenko, O.V. (2011). Ukrainian Carpathians (geophysics, deep processes). Kiev: Logos, 129 p. (in Russian).
Gordienko, V.V., Gordienko, I.V., Zavgorodnyaya, O.V., Kovachikova, S., Logvinov, I.M., Tarasov, V.N., & Usenko, O.V. (2012). Volyn-Podilsky plate (geophysics, deep processes). Kiev: Naukova Dumka, 193 p. (in Russian).
Gordienko, V.V., Gordienko, I.V., Zavgorodnyaya, O.V., Logvinov, I.M., & Tarasov, V.N. (2015). Donbass (geophysics, deep processes). Kiev: Logos, 159 p. (in Russian).
Gordienko, V.V., Gordienko, I.V., Zavgorodnyaya, O.V., Logvinov, I.M., & Tarasov, V.N. (2017). South-Ukrainian monocline, Scythian plate, Black Sea (geophysics, deep processes). Retrieved from https://ivangord2000.wixsite.com/tectonos (in Russian).
Gordienko, V.V., & Talvirskiy, B.B. (Eds.). (1990). Tectonosphere of Middle Asia and South Khazahstan. Кiev: Naukova Dumka, 232 p. (in Russian).
Grad, M., Guterch, A., Keller, G., Janik, T., Hegedűs, E., Vozár, J., Ślączka, A., Tiira, T., & Yliniemi, J. (2006). Lithospheric structure beneath trans-Carpathian transect from Precambrian platform to Pannonian basin: CELEBRATION 2000 seismic profile CEL05. Journal of Geophysical Research, 111(B3). https://doi.org/10. 1029/2005JB003647.
Janik, T., Starostenko, V., Aleksandrowski, P., Yegorova, T., Czuba, V., Środa, P., Murovskaya, A., Zajats, K., Kolomyets, H., Lysynchuk, D., Wójcik, D., Mechie, J., Głuszyński, A., Omelchenko, V., Legostaeva, O., Tolkunov, A., Amashukeli, T., Gryn, D., & Chulkov, S. (2020). TTZ-SOUTH seismic experiment. Geofizicheskiy Zhurnal, 42(3), 28―44. https://doi.org/10.24028/gzh.0203-3100.v42i3.2020.204698.
Janik, T., Starostenko, V., Aleksandrowski, P., Yegorova, T., Czuba, W., Środa, P., Murovskaya, A., Zayats, K., Mechie, J., Kolomiyets, K., Lysynchuk, D., Wójcik, D., Omelchenko, V., Legostaieva, O., Głuszyński, A., Tolkunov, A., Amashukeli, T., Gryn, D., & Chulkov, S. (2024).Lithospheric Structure of the east European Craton at the transition from Sarmatia to Fennoscandia Interpreted from the TTZ-South Seismic Profile (SE Poland to Ukraine). Minerals, 12(112), 1―124. https://doi.org/ 10.3390/min12020112.
Panov, B.S., Griffin, V.L., & Panov, Yu.B. (2000). PT conditions of chromopyrope formation from kimberlites of the Ukrainian Shield. Doklady NANU, (3), 137―143 (in Russian).
Sergeev, K.F., Gordienko, V.V., & Krasnyy, M.L. (Eds.). (1992). Tectonosphere of the Pacific margin of Asia. Vladivostok: Publ. House of the Far Eastern Branch of the Russian Academy of Sciences, 238 p. (in Russian).
Shcherbakov, I.B. (2005). Petrology of the Ukrainian Shield. Lviv: ZUKC, 366 p. (in Russian).
Starostenko, V., Janik, T., Kolomiyets, K., Czuba, W., Środa, P., Grad, M., Kovács, I., Stephenson, R., Lysynchuk, D., Thybo, H., Artemieva, I.M., Omelchenko, V., Gintov, O., Kutas, R., Gryn, D., Guterch, A., Hegedüs, E., Komminaho, K., Legostaeva, O., Tiira, T., & Tolkunov, A. (2013). Seismic velocity model of the crust and upper mantle along profile PANCAKE across theCarpathians between the Pannonian Basin and the East European Craton. Tectonophysics, 608, 1049―1072. https://doi.org/10.1016/j.tecto.2013.07.008.
Starostenko, V., Janik, T., Stephenson, R., Gryn, D., Rusakov, O., Czuba, W., Środa, P., Grad, M., Guterch, A., Flüh, E., Thybo, H., Artemieva, I., Tolkunov, A., Sydorenko, G., Lysynchuk, D., Omelchenko, V., Kolomiyets, K., Legostaeva, O., Dannowski, A., & Shulgin, A. (2017). DOBRE-2 WARR profile: the Earth’s upper crust across Crimea between the Azov Massif and the northeastern Black Sea. Geol. Soc., London, Spec. Publ. https://doi.org/10.1144/sp428.11.
Starostenko, V., Janik, T., Yegorova, T., Farfuliak, L., Czuba, W., Środa, P., Thybo, I. Artemieva, M. Sosson, Y., Volfman, K., Kolomiyets, D., Lysynchuk, V., Omelchenko, D., Gryn, A., Guterch, A., Komminaho, K., Legostaeva, O., Tiira, T., & Tolkunov, A. (2015). Seismic model of the crust and upper mantle in the Scythian Platform: the DOBRE 5 profile across the north western Black Sea and the Crimean Peninsula. Geophysical Journal International, 201(1), 406―428. https://doi.org/10.1093/gji/ggv018.
Svetov, S.A., & Smolkin, V.F. (2003). Model PT-conditions for the generation of high-magnesium Precambrian magmas of the Fennoscandian Shield. Geochimiya, (8), 879―892 (in Russian).
Tripolsky, A.A., & Sharov, N.V. (2004). Lithosphere of Precambrian shields of the Earth’s northern hemisphere from seismic data. Petrozavodsk: Karelian Research Center of the Russian Academy of Sciences, 159 p. (in Russian).
Tsymbal, S.N., Krivdik, S.G., Kiryanov, N.N., & Makivchuk, O.F. (1999). Material composition of kimberlites of the Kirovograd geoblock (Ukrainian Shield). Myneralogicheskiy Zhurnal, (2-3), 22―38 (in Russian).
Tsymbal, S.N., & Tsymbal, Ju.S. (2003). The composition of the upper mantle and diamond prospects the north-western part of the Ukrainian shield. Myneralogicheskiy Zhurnal, (5-6), 70―87 (in Russian).
Varentsov, I.M., Gordienko, V.V., Gordienko, I.V., Zavgorodnyaya, O.V., Kovachikova, S., Logvinov, I.M., Tarasov, V.N., & Tregubenko, V.I. (2013). Slope of the Voronezh crystalline massif (geophysics, deep processes). Kiev: Logos, 112 p. (in Russian).
Yegorova, T., Baranova, E.P., & Omelchenko, V.D. (2006).The crustal structure of the Black Sea from reinterpretation of deep seismic sounding data acquired in the 1960s. Geol. Soc., London, Spec. Publ., 340, 43―56. https://doi.org/10.1144/SP340.4
Zverev, S.M., & Kosminskaya, I.P. (Eds.). (1980). Seismic models of the lithosphere of the main geostructures of the territory of the USSR. Moscow: Nauka, 184 p. (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Vadim Gordienko

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).