RomUkrSeis profile: a model of the deep structure of the lithosphere and its geological and geophysical interpretation. P. II. The nature of geophysical heterogeneities based on complex analysis
DOI:
https://doi.org/10.24028/gj.v47i1.317035Keywords:
RomUkrSeis profile, deep structure of the lithosphere, lithosphere-asthenosphere boundary, geological and geophysical interpretation, Teisseyre-Tornquist Zone, Transylvanian BasinAbstract
For the first time, the lithosphere deep structure was analyzed using the RomUkrSeis profile. The study incorporated the velocity, gravity and geoelectric models applying information about the lithosphere-asthenosphere boundary, thermal and magnetic field anomalies and signs of modern activation. The following features of the main layers of the Earth’s crust and upper mantle were identified. In the upper crust of the Apuseni Mountains, high-density heterogeneities can be interpreted as ophiolite complexes. The detected deconsolidation of the upper crust of the NE Apuseni Mountains and part of the Transylvanian Basin is probably related to a detachment at the depth of 6 km. The nature of density heterogeneity at depths of 6-12 km under the Inner Eastern Carpathians can be caused by igneous rocks or be considered as a sedimentary depression, which extends to the southwest. The relief of Moho divide beneath the Apuseni Mountains was detailed, where it reaches a depth of 38 km. It was found that the subduction or rise of the upper edge of the asthenosphere matches with the hypothetical tracing of crustal-mantle faults to it, namely: Western Apuseni, Bohdan-Dragos Voda, Krakowiec-Bikaj (Uzhochtskyi), Frazin (Transcarpathian), Rava-Ruskyi, Rivnenskyi, Pridnistrovskyi, Podilsky. A lithospheric zone under the Transylvanian Basin was discovered, which penetrates the mantle and may be a unique system of fluid migration channels, which cause the formation of methane deposits. The nature of the anomalous electrical conductivity of the Carpathian-Pannonian region confirms the fluid concept and satisfies the interpretation of seismic and gravity models. In the Teisseyre-Tornquist zone, gravity modeling confirmed rock decompression of sedimentary depression, upper crust and a narrow mantle wedge in the Moho division according to seismic data and detected densification in the lower crust and upper mantle. According to electromagnetic data, the zone is located between electrical conductivity anomalies in the crust. It has a thick lithosphere up to 100 km. The probable location of the Teisseyre-Tornquist zone is considered in the profile cross-section. The zone is revealed by geophysical heterogeneities (density, geoelectric, thermal) and is explained by warming, as well as fluid saturation (possibly partial melting) of crustal and upper mantle rocks. A cluster of gas fields in the area of the RomUkrSeis profile (in the Transylvanian Basin and the frontal part of the Carpathians) may be related to faults Bistrica Pride, Frazin (Transcarpathian), and Rava-Ruskyi, which can probably be considered as fluid-magmatic channels
References
Amashukeli, T.A. (2021). The structure of the lithosphere of the south-western margin of the East European Platform according to the wide-angle deep seismic soundings profiles. Extended abstract of candidate’s thesis. Kyiv, 26 p. (in Ukrainian).
Ivanіuta, M.M. (Ed.). (1998). Atlas of Oil-and-Gas Fields of Ukraine. Vol. 4, 5 Lviv: Tsentr Yevropy, 710 p. (in Ukrainian).
Burakhovich, T.K. (2004). Quasi-three-dimentional model of the Carpathian region. Geofizicheskiy Zhurnal, 26(4), 63—74 (in Russian).
Burakhovich, T.K. & Kulik, S.N. (2009). Three-dimensional geoelectric model of the Earth‘s crust and upper mantle of the western part of the Ukrainian Shield and its slopes. Geofizicheskiy Zhurnal, 31(1), 88—99 (in Russian).
Burakhovych, T.K., Kushnir, A.M. & Ilyenko, V.A. (2022). Modern geoelectromagnetic researches of the Ukrainian Carpathians. Geofizicheskiy Zhurnal, 44(3), 21—43. https://doi.org/10.24028/gj.v44i3.261966 (in Ukrainian).
Verkhovtsev, V. (2006). Recent vertical movements of the earth‘s crust in the territory of Ukraine, their relationship with linear and ring structures. In Energy of the Earth, its geological and ecological manifestations, scientific and practical use (pp. 129—137). Kyiv: Publ. of the Taras Shevchenko National University (in Ukrainian).
Belyavskiy, V.V., & Kulik, S.N. (Eds.). (1998). Geoelectric model of the tectonosphere of the Eurasian folded belt and contiguous territories. Kyiv: Znannya, 265 p. (in Russian).
Gintov, O.B., Tsvetkova, T.О., Bugaenko, I.V., Zayats, L.N., & Murovska, G.V. (2022). The deep structure of the Trans-European Suture Zone (based on seismic survey and GSR data) and some insights in to its development. Geofizicheskiy Zhurnal, 44(6), 63—87. https://doi.org/10.24028/gj.v44i6.273640 (in Ukrainian).
Gordienko, V.V. (2014). Deep processes and seismic activity. Geofizicheskiy Zhurnal, 36(1), 19—42. https://doi.org/10.24028/gzh.0203-3100.v36i1.2014.116147 (in Russian).
Gordienko, V.V., Gordienko, I.V., Zavgorodnyaya, O.V., Kovachikova, S., Logvinov, I.M., Tarasov, V.N. & Usenko, O.V. (2012). Volyn-podolskaya plate (Geophysics, deep processes). Kiev: Naukova Dumka, 198 p. (in Russian).
Gordienko, V.V., Gordienko, I.V., Zavgorodnyaya, O.V., Kovachikova, S., Logvinov, I.M., Tarasov, V.N., & Usenko, O.V. (2005). Ukrainian Shield (Geophysics, deepprocesses). Kiev: Korvin Press, 210 p. (in Russian).
Entin, V.A. (2005). Geophysical basis of the Tectonic map of Ukraine, scale 1 : 1 000 000. Geofizicheskiy Zhurnal, 27(1), 74—84 (in Russian).
Yegorova, T.P., Verpakhovska, О.O. & Murovska, G.V. (2022). Three-layer structure of the Carpathian sedimentary prism from the results of seismic migration on the PANCAKE and RomUkrSeis WARR profiles. Geofizicheskiy Zhurnal, 44(2), 152—169 https://doi.org/10.24028/gj.v44i2.25 (in Ukrainian).
Zayats, Kh.B. (2013). Deep structure of the subsoil of the Western region of Ukraine on the basis of seismic research and direction of exploration for oil and gas. Lviv: Center of Europe, 79 p. (in Ukrainian).
Korchin, V.А., Burtny, P.А., & Kobolev, V.P. (2013). Thermobaric petrophysical modeling in geophysics. Kiev: Naukova Dumka, 312 p. (in Russian).
Kulik, S.N., Lankis, L.K. & Lysenko, Е.S. (1995). The results of numerical modeling of deep geoelectric section in the region of the Eastern Carpathians and adjacent territories. Geofizicheskiy Zhurnal, 17(4), 81—87 (in Russian).
Kutas, R.I. (2016). Geothermal Conditions and Mesozoic-Cainozoic Evolution of the Carpatho-Pannonian Region. Geofizicheskiy Zhurnal, 38(5), 75—107. https://doi.org/10.24028/gzh.0203-3100.v38i5.2016.107823 (in Russian).
Kushnir, A.N., & Burakhovich, T.K. (2012). Electrical conductivity anomalies and intraplate earthquakes in the western part of the Ukrainian Shield and Volyn-Podolsk plate. Geofizicheskiy Zhurnal, 34(4), 157—165 (in Russian).
Chekunov, A.V. (Ed.). (1994). The lithosphere of Central and Eastern Europe. Young platforms and alpine fold belt. Kiev: Naukova Dumka, 331 p. (in Russian).
Makarenko, I.B., Burahovych, T.K., Kozlenko, M.V., Murovska, A.V., Kozlenko, U.V., & Savchenko, O.S. (2024). RomUkrSeis profile: a model of the deep structure of the lithosphere and itsgeological and geophysical interpretation. P. 1. Density heterogeneity and electrical conductivity. Geofizychnyi Zhurnal, 46(6) 81―108. https://doi.org/10.24028/gj.v46i6.314130 (in Ukrainian).
Makarenko, I.B., Starostenko, V.I., Kuprienko, P.Ya., Savchenko, O.S., & Legostaeva, O.V. (2021). Heterogeneity of the Earth’s crust of Ukraine and adjacent regions according to the results of 3D gravity modeling. Kyiv: Naukova Dumka, 204 p. (in Ukrainian).
Palienko, V.P. (Ed.). (2013). Morphostructural-neotectonic analysis of Ukraine’s territory (conceptual foundations, methods and implementation). Kyiv: Naukova Dumka, 263 p. (in Ukrainian).
Orlyuk, M.I, Bakarjieva, M.I., & Marchenko, A.V. (2023). Magnetic characteristics and tectonic structure of the Earth’s crust of the Carpathian oil and gas region as a component of complex hydrocarbon criteria. Geofizicheskiy Zhurnal, 44(5), 77―105. https://doi.org/10.24028/gj.v44i5.272328 (in Ukrainian).
Orlyuk, M., Beşutiu, L., Romenets, A., Zlagnean, L., Bakarzhieva, M., Athanasiu, L., Marchenko, A., & Makarenko, I. (2021). Magnetic model of the joint zone of the Eastern Carpathians and the Eastern European craton in the area of the RomUkrSeis geotransect. In Geophysics and Geodynamics: Prediction and Monitoring of Geological Medium (pp. 171—174). Lviv: Rastr-7 (in Ukrainian).
Starostenko, V.I., & Gintov, O.B. (Eds.). (2018). Essays on Geodynamics of Ukraine. Kiev: VI EN EY, 465 p. (in Russian).
Pavlenkova, N.I. (2019). Structural features of the lithosphere of continents and oceans and their nature. Geofizicheskiy Zhurnal, 41(2), 3―48. https://doi.org/10.24028/gzh.0203-3100.v41i2.2019.164448 (in Russian).
Starostenko, V.I., Gintov, O.B., & Kutas, R.I. (2011). Geodynamic development of the lithosphere of Ukraine and its role in the formation and location of mineral deposits. Geofizicheskiy Zhurnal, 33(3), 3—22. https://doi.org/10.24028/gzh.0203-3100.v33i3.2011.116919 (in Russian).
Starostenko, V.I., Gintov, O.B., Murovska, G.V., Mychak, S.V., & Lysynchuk, D.V. (2024). Tectonics and deep structure of the southwestern part of the East European Craton within Ukraine. P. II. Geofizychnyi Zhurnal, 46(5), 3—31. https://doi.org/10.24028/gj.v46i5.310287 (in Ukrainian).
Tretyak, K.R., Maksymchuk, V.Yu., & Kutas, R.I. (Eds.). (2015). Modern geodynamics and geophysical fields of the Carpathians and adjacent territories. Lviv: Publ. House of Lviv Polytechnic, 420 p. (in Ukrainian).
Sheremet, E.M., Burakhovich, T.K., Nikolaev, I.Yu., Dudik, A.M., Dudik, K.A., Kushnir, A.N., Shirkov, B.I., Setaya, L.D., & Agarkova, N.G. (2016). Geoelectrical and geochemical studiesin forecasting hydrocarbons in Ukraine. Kyiv: CP «Komprint», 489 p. (in Russian).
Shestopalov, V.M. (2020). On geological hydrogen. Geofizicheskiy Zhurnal, 42(6), 3—35. https://doi.org/10.24028/gzh.0203-3100.v42i6.2020.222278 (in Ukrainian).
Ádám, A., Szarka, L., Novák, A., & Wesztergom, V. (2017). Key results on deep electrical conductivity anomalies in the Pannonian Basin (PB), and their geodynamic aspects. Acta Geodaetica et Geophysica, 52, 205—228. https://doi.org/10.1007/s40328-0160192-2.
Bala, A., Raileanu, V., Dinu, C., & Diaconescu, M. (2015). Crustal seismicity and active fault systems in Romania. Romanian Reports in Physics, 67(3), 1176—1191.
Beşuţiu, L., Gorie, J., Dordea, D., & Sprinceană, V. (2005). Geophysical setting of the deep well 6042 Deleni in central Transylvania-Romania. Revue Roumaine de Géophysique, 49, 73—84.
Bielik, M., Makarenko, I., Csicsay, K., Legostaeva, O., Starostenko, V., Savchenko, A., Simonova, B., Dererova, J., Fojtikova, L., Pasteka, R., & Vozar, J. (2018). The refined Moho depth map in the Carpathian-Pannonian region. Contributions to Geophysics and Geodesy, 48(2), 179—190. https://doi.org/10.2478/congeo-2018-0007.
Burakhovych, T., Kushnir, A., & Stolpakov, A. (2024). Geoelectric heterogeneities of the Pre-Dobrudga Trough a zone of hydrocarbon manifestations. Geofizychnyi Zhurnal, 46(5), 32—51. https://doi.org/10.24028/gj.v46i5.313534.
Dererova, J., Zeyen, H., Bielik, M., & Salman, K. (2006). Application of integrated geophysical modeling for determination of the continental lithospheric thermal structure in the eastern Carpathians. Tectonics, 25, TC3009. https://doi.org/10.1029/2005TC001883.
Horváth, F., Bada, G., Szafián, P., Tari, G., Ádám, A., & Cloetingh, S. (2006). Formation and deformation of the Pannonian Basin: constraints from observational data. In D. Gee, R. Stephenson (Eds.), European Lithosphere Dynamics (pp. 191―206). Geological Society Memoir 32.
Ionescu, C., Hoeck, V., Tomek, C., Koller, F., Balintoni, I., & Beşuţiu, L. (2009). New insights into the basement of the Transylvanian Depression (Romania). Lithos, 108(1-4), 172—191. https://doi.org/10.1016/j.lithos.2008.06.004.
Jones, A.G., Plomerova, J., Korja, T., Sodoudi, F., & Spakman, W. (2010). Europe from the bottom up: A statistical examination of the central and northern European lithosphere-asthenosphere boundary from comparing seismological and electromagnetic observations. Lithos, 120, 14—29. https://doi.org/10.1016/j.lithos.2010.07.013.
Jóźwiak, W. (2013). Electromagnetic study of lithospheric structure in the marginal zone of East European Craton in NW Poland. Acta Geophysica, 61, 1101—1129. https://doi.org/10.2478/s11600-013-0127-z.
Korja, T. (2007). How is the European lithosphere Imaged by magnetotellurics? Surveys in Geophysics, 28, 239—272. https://doi.org/10.1007/s10712-007-9024-9.
Kováč, M., Andreyeva-grigorovich, A., Bajraktarević, Z., Brzobohatý, R., Filipescu, S., Fodor, L., Harzhauser, M., Nagymarosy, A., Oszczypko, N., Pavelić, D., Rögl, F., Saftić, B., Sliva, L., & Studencka, B. (2007). Badenian evolution of the Central Paratethys Sea: paleogeography, climate and eustatic sea-level changes. Geologica Carpathica, 58(6), 579—606.
Linzer, H-G., Frisch, W., Zweigel, P., Girbacea, R., Hann, H-P., & Moser, F. (1998). Kinematic evolution of the Romanian Carpathians. Tectonophysics, 297, 133―156. https://doi.org/10.1016/S0040-1951(98)00166-8.
Narkiewicz, M., Maksym, A., Malinowski, M., Grad, M., Guterch, A., Petecki, Z., Probulski, J., Janik, T., Majdański, M., Środa, P., Czuba, W., Gaczyński, E., & Jankowski, L. (2015). Transcurrent nature of the Teisseyre-Tornquist Zone in Central Europe: results of the POLCRUST-01 deep reflection seismic profile. International Journal of Earth Sciences, 104, 775—796. https://doi.org/10.1007/s00531-014-1116-4.
Novák, A., Rubóczki, T., Wesztergom, V., Radulian, M., Szakács, A., Csaba, Molnár, C., & Kovács, I.J. (2024). Lithospheric scale cross-section through the Transylvanian Basin: A joint geophysical and geological survey. Geologica Carpathica, 75(3), 195—211. https://doi.org/10.31577/GeolCarp.2024.11.
Popescu, B.M. (2021). Transcarpathian Petroleum Province in Romania. Geo-Eco-Marina, 27, 5—35. https://doi.org/10.5281/zenodo.5801082.
Schmid, S.M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S. Schuster, R., Tischler, M., & Ustaszewski, K. (2008). The Alpine-Carpathian-Dinaridic orogenic system: correla-tion and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139―183. https://doi.org/ 10.1007/s00015-008-1247-3.
Seghedi, I., Downes, H., Szakács, A., Mason, P.R.D., Thirlwall, M.F., Roşu, E., Pécskay, Z., Márton, E., & Panaiotu, C. (2004). Neogene-Quaternary magmatism and geodynamics in the Carpathian Pannonian region: a synthesis. Lithos, 72(3-4), 117―146. https://doi.org/10.1016/j.lithos.2003.08.006.
Semenov, V.Yu., Pek, J., Adam, A., Jozwiak, W., Ladanyvskyy, B., Logvinov, I., Pushkarev, P., & Vozar, J. (2008). Electrical structure of the upper mantle beneath Central Europe: Results of the CEMES project. Acta Geophysica, 56(4), 957—981. https://doi.org/10.2478/s11600-008-0058-2.
Starostenko, V., Janik, T., Mocanu, V., Stephenson, R., Yegorova, T., Amashukeli, T., Czuba, W., Środa, P., Murovskaya, A., Kolomiyets, K., Lysynchuk, D., Okoń, J., Dragut, A., Omelchenko, V., Legostaieva, O., Gryn, D., Mechie, J., & Tolkunov, A. (2020). RomUkrSeis: Seismic model of the crust and upper mantle across the Eastern Carpathians ― From the Apuseni Mountains to the Ukrainian Shield. Tectonophysics, 794, 228620. https://doi.org/10.1016/j.tecto.2020.228620.
Tiliţă, M., Lenkey, L., Maţenco, L., Horváth, F., Suranyi, G., & Cloetingh, S. (2018). Heat Flow Modelling in the Transylvanian basin: Implications for the Evolution of the Intra Carpathian Area. Global and Planetary Change, 171, 148—166. https://doi:10.1016/j.gloplacha.2018. 07.007.
Wybraniec, S., Zhou, S., Thybo, H., Forsberg, R., Perchuc, E., Lee, M., Demianov, G.D., & Strakhov, V.N. (1998). New map compiled of Europe’s gravity field. Eos, Transactions American Geophysical Union, 79, 437—442. https://doi.org/10.1029/98EO00330
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Iryna Makarenko

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).