Magnetic enhancement model for southern Ukraine loess on the example of the Middle Pleistocene sequence at Dolynske

Authors

  • D.V. Hlavatskyi Subbotin Institute of Geophysics,National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gj.v47i3.323058

Keywords:

Danube basin, loess-palaeosol sequence, magnetic susceptibility, rock magnetism, pedogenic model, Mid-Brunhes transition

Abstract

Rock magnetic parameters of loess-palaeosol sequences, primarily, magnetic susceptibility and its frequency-dependence factor, play a significant role in the Pleistocene climate studies. Usually, the interpretation of loess magnetic patterns is based on two commonly accepted models: the pedogenic («Chinese») magnetic enhancement and reducing-pedogenic («Alaskan») models. However, there is an increasing number of cases where each model cannot be applied alone (the so-called transitional model), in particular in northwestern Ukraine. This study provides rock magnetic data from the Middle Pleistocene loess sequence at Dolynske in southern Ukraine. Combined with previously obtained data from the Roksolany and other sections in the region, the results show high concentration of ferrimagnetic minerals, in particular, superparamagnetic magnetite, in palaeosols. This proves the predominance of the typical pedogenic magnetic enhancement model for southern Ukraine, as well as for the most of Ukraine. According to the rock magnetic indices, in the Middle Pleistocene, seven interglacials were identified in the interval of the loess-soil series of southern Ukraine. They correspond to the marine isotope stages MIS 19, MIS 17, MIS 15, MIS 13, MIS 11, MIS 9, and MIS 7. The rhythms have been established for individual climatic optima (interstadials), particularly for MIS 15e, MIS 15a, MIS 13c, MIS 13a, MIS 9e, MIS 9a, MIS 7e, and MIS 7a—c, which are clearly detected by magnetic methods. The paper considers several (chrono-)stratigraphic problems in the Middle Pleistocene loess formation of southern Ukraine and compares palaeogeographic stages of the Ukrainian climatostratigraphic system with major global and regional palaeoclimatic trends.

References

Bakhmutov, V.G., Hlavatskyi, D.V., Veklych, Y.M., Shpyra, V.V., & Yakukhno, V.I. (2021). The Matuyama—Brunhes boundary in the loess-palaeosol sequence of Dolynske, southern Ukraine. Geofizicheskiy Zhurnal, 43(5), 95—110. https://doi.org/10.24028/gzh.v43i5.244065 (in Russian).

Bakhmutov, V., Melnyk, G., Hlavatskyi, D., & Poliachenko, I. (2024). Geomagnetic field excursions of the brunhes chron. Part 2: magnetostratigraphy of subaerial deposits and impact on the environment. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 4(107), 1322. https://doi.org/10.17721/1728-2713.107.02 (in Ukrainian).

Bakhmutov, V.G., Mokriak, I.N., Skarboviychuk, T.V., & Yakukhno, V.I. (2005). Results of palaeomagnetic studies of Danube terraces sections and problems of Pleistocene magnetostratigraphy of the west Black Sea region. Geofizicheskiy Zhurnal, 25(6), 980—991 (in Russian).

Veklich, M.F. (1982). Stages and stratotypes of the soil formations of Ukraine in the Upper Cenozoic. Kiev: Naukova Dumka (in Russian).

Veklich, M.F., & Veklich, Y.M. (1993). Stage and stratoregion of the estuary-marine Pleistocene of the Azov-Black Sea Basin. Kyiv: Publ. by the Institute of Geography of the National Academy of Sciences of Ukraine, 186 p. (in Russian).

Hlavatskyi, D.V., Veklych, Y.M., Bakhmutov, V.G., Shpyra, V.V., Skarboviychuk, T.V., Yakukhno, V.I., & Poliachenko, I.B. (2022). Palaeomagnetic suitability of a new section with a potential lower boundary for the Quaternary on the left bank of the lower River Danube. Geofizicheskiy Zhurnal, 44(4), 3850. https://doi.org/10.24028/gj.v44i4.264840 (in Ukrainian).

Gozhik, P.F. (2006). Freshwater mollusks of the late Cenozoic of the south of Eastern Europe. Kiev, 247 p. (in Russian).

Konstantinova, N.A. (1967). Antropogene of the Southern Moldaviia and South-Western Ukraine. Moscow: Nauka, 138 p. (in Russian).

Gerasimenko, N.P., & Matvijishyna, Zh.M. (2007). The problems of Zavadiv «great interglacial». Problems of Middle Pleistocene interglacial. Proceeding of the XIV Ukrainian-Polish Workshop 12—16 September 2007 (pp. 194—206). Lviv: Publishing Center of Ivan Franko National University of Lviv (in Ukrainian).

Matviishyna, Zh.M., Gerasimenko, N.P., Perederyi, V.I., Bragin, A.M., Ivchenko, A.S., Karmazinenko, S.P., Nagirnyi, V.M., & Parkhomenko, O.G. (2010). Spatio-temporal correlation of Quaternary palaeogeographic conditions on the territory of Ukraine. Kyiv: Naukova Dumka, 192 p. (in Ukrainian).

Menshov, O. (2015). Magnetic susceptibility of the southern chernozems of Ukraine, case study from Odessa region. Visnyk of Taras Shevchenko National University of Kyiv. Geology, 69(2), 70—74. https://doi.org/10.17721/1728-2713.69.11.70-74 (in Ukrainian).

Sirenko, N.A., & Turlo, S.I. (1986). Successions of soils and vegetation of Ukraine during the Pliocene and Pleistocene. Kiev: Naukova Dumka, 188 p. (in Russian).

Sirenko, O. (2017). Subaeral Eopleistocene—Lower Neopleistocene deposits of the plain part of Ukraine and their palynological characteristic. Dnipropetrovsk University Bulletin. Ser. Geology, Geography, 25(1), 101—118. https://doi.org/10.15421/111712 (in Ukrainian).

Tretyak, A.N., Shevchenko, A.I., Dudkin, V.P., & Vigilyanskaya, L.I. (1987). Paleomagnetic stratigraphy of key Late Cenozoic sections of the south of Ukraine. Kiev: Publication of the Academy of Sciences of the Ukrainian SSR, Institute of Geological Sciences, 50 p. (in Russian).

Bakhmutov, V., & Hlavatskyi, D. (2022). On the reliability of a stratigraphic interpretation that overlooks geophysical techniques and results when determining the age of loess-soil deposits — Comment on Łanczont et al. (2022) «A remarkable last glacial loess sedimentation at Roxolany in the Dniester Liman (Southern Ukraine)». Quaternary Science Reviews, 297, 107668. https://doi.org/10.1016/j.quascirev.2022.107668.

Bakhmutov, V., Hlavatskyi, D., & Poliachenko, I. (2023). Magnetostratigraphy of the Pleistocene loess-palaeosol sequences in Ukraine and Moldova: A historical overview and recent developments. Geological Quarterly, 67(4), 35. http://dx.doi.org/10.7306/gq.1705.

Bokhorst, M.P., Beets, C.J., Marković, S.B., Gerasimenko, N.P., Matviishina, Z.N., & Frechen, M. (2009). Pedo-chemical climate proxies in Late Pleistocene Serbian-Ukranian loess sequences. Quaternary International, 198(1), 113—123. https://doi.org/10.1016/j.quaint.2008.09.003.

Bonchkovskyi, O. (2025). Late Pleistocene pedogenesis response to Millennial-scale climate variability: Evidence from the Volyn sequences (NW Ukraine). Catena, 252, 108836. https://doi.org/10.1016/j.catena.2025.108836.

Bonchkovskyi, O., & Hlavatskyi, D. (2025). Late Pleistocene pedogenesis and loess magnetism in northwestern Ukraine. Quaternary Research, 1—31. https://doi.org/10.1017/qua.2024.51.

Bonchkovskyi, O., Hlavatskyi, D., Kuraieva, I., Kravchuk, I., & Bonchkovskyi, A. (2023). Lithology, Geochemistry and Magnetic Susceptibility of the Best Developed Late Pleistocene Loess-Palaeosol Sequence in North-Western Ukraine, Novyi Tik. International Conference of Young Professionals «GeoTerrace-2023» (pp. 1—5). https://doi.org/10.3997/2214-4609.2023510099.

Bondar, K., Ridush, B., Baryshnikova, M., & Popiuk, Y. (2019). On palaeomagnetic dating of fluvial deposits in the section of Neporotove gravel quarry on the Middle Dniester. Journal of Geology, Geography and Geoecology, 28(2). 241249. https://doi.org/10.15421/111925.

Bradák, B., Seto, Y., & Nawrocki, J. (2019). Significant pedogenic and palaeoenvironmental changes during the early Middle Pleistocene in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 534, 109335. https://doi.org/10.1016/j.palaeo.2019.109335.

Bradák, B., Seto, Y., Stevens, T., Újvári, G., Fehér, K., & Költringer, C. (2021). Magnetic susceptibility in the European Loess Belt: New and existing models of magnetic enhancement in loess. Palaeogeography, Palaeoclimatology, Palaeoecology, 569, 110329. https://doi.org/10.1016/j.palaeo.2021.110329.

Buggle, B., Hambach, B., Glaser, B., Gerasimenko, N., Marković, S., Glaser, I., & Zöller, L. (2009). Stratigraphy, and spatial and temporal paleoclimatic trends in Southeastern/Eastern European loess-paleosol sequences. Quaternary International, 196, 86—106. https://doi.org/10.1016/j.quaint.2008.07.013.

Constantin, D., Mason, J.A., Veres, D., Hambach, U., Panaiotu, C., Zeeden, C., Zhou, L., Marković, S.B., Gerasimenko, N., Avram, A., Tecsa, V., Groza-Sacaciu, S.M., del Valle Villalonga, L., Begy, R., & Timar-Gabor, A. (2021). OSL-dating of the Pleistocene-Holocene climatic transition in loess from China, Europe and North America, and evidence for accretionary pedogenesis. Earth-Science Reviews, 221, 103769. https://doi.org/10.1016/j.earscirev.2021.103769.

De Benedetti, C., Gerasimenko, N., Ravazzi, C., & Magri, D. (2022). History of Tilia in Europe since the Eemian: Past distribution patterns. Review of Palaeobotany and Palynology, 307, 104778. https://doi.org/10.1016/j.revpalbo.2022.104778.

Dearing, J.A., Dann, R.J.L., Hay, K., Lees, J.A., Loveland, P.J., Maher, B.A., & O’Grady, K. (1996). Frequency-dependent susceptibility measurements of environmental materials. Geophysical Journal International, 124(1), 228—240. https://doi.org/10.1111/j.1365-246X. 1996.tb06366.x.

Evans, M.E., & Heller, F. (2003). Environmental Magnetism. Principles and Applications of Enviromagnetics. Academic Press, 299 p.

Evans, M.E., & Heller, F. (1994). Magnetic enhancement and palaeoclimate: Study of a loess/palaeosol couplet across the Loess Plateau of China. Geophysical Journal International, 117(1), 257—264. https://doi.org/10.1111/j.1365-246X.

tb03316.x.

Eyre, J.K., & Shaw, J. (1994). Magnetic enhancement of Chinese loess — The role of γFe2O3? Geophysical Journal International, 117(1), 265—271. https://doi.org/10.1111/j.1365-246X. 1994.tb03317.x.

Gendler, T.S., Heller, F., Tsatskin, A., Spassov, S., Du Pasquier, J., & Faustov, S.S. (2006). Roxolany and Novaya Etuliya — key sections in the western Black Sea loess area: Magnetostratigraphy, rock magnetism, and paleopedology. Quaternary International, 152-153, 78—93. https://doi.org/10.1016/j.quaint.2006.01.001.

Gerasimenko, N., Hlavatskyi, D., Bakhmutov, V., Wimbledon, W.A.P., Poliachenko, I., & Bonchkovskyi, O. (2022). Enviromagnetic Study of the Reference Ukrainian Loess-Palaeosol Sequence at Stari Kaydaky. 16th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment (pp. 1—5). https://doi.org/10.3997/2214-4609.2022580069.

Gozhik, P.F., & Gerasimenko, N.P. (2011). The lower and middle Pleistocene of Ukraine. In N.P. Gerasimenko, P.F. Gozhik, N.I. Dykan, Zh.M. Matviishyna, V.M. Shelkoplyas, B.D. Vozgrin (Eds.), Quaternary studies in Ukraine (pp. 9—26). Kyiv: Institute of Geological Sciences NASU.

Haesaerts, P., Gerasimenko, N., Damblon, F., Yurchenko, T., Kulakovska, L., Usik, V., & Ridush, B. (2019). The Upper Paleolithic site Doroshivtsi III: a new chronostratigraphic and environmental record of the Late Pleniglacial in the regional context of the Middle Dniester-Prut loess domain (Western Ukraine). Quaternary International, 546, 196—215. https://doi.org/10.1016/j.quaint.2019.12.018.

Heller, F., & Liu, T.-S. (1984). Magnetism of Chinese loess deposits. Geophysical Journal International, 77(1), 125—141. https://doi.org/10. 1111/j.1365-246X.1984.tb01928.x.

Hlavatskyi, D., & Bakhmutov, V. (2021). Early-Middle Pleistocene Magnetostratigraphic and Rock Magnetic Records of the Dolynske Section (Lower Danube, Ukraine) and Their Application to the Correlation of Loess-Palaeosol Sequences in Eastern and South-Eastern Europe. Quaternary, 4(4), 43. https://doi.org/10.3390/quat4040043.

Hlavatskyi, D.V., & Bakhmutov, V.G. (2020). Magnetostratigraphy and magnetic susceptibility of the best developed Pleistocene loess-palaeosol sequences of Ukraine: implications for correlation and proposed chronostratigraphic models. Geological Quarterly, 64(3), 723—753. https://doi.org/10.7306/gq.1544.

Hlavatskyi, D.V., Gerasimenko, N.P., Bakhmutov, V.G., Bonchkovskyi, O.S., Poliachenko, I.B., Shpyra, V.V., Mychak, S.V., Kravchuk, I.V., & Cherkes, S.I. (2021). Significance of the Ukrainian loess-palaeosol sequences for Pleistocene climate reconstructions: rock magnetic, palaeosol and pollen proxies. Geofizicheskiy Zhurnal, 43(3), 3—26. https://doi.org/10.24028/gzh.v43i3.236378.

Hlavatskyi, D., Bakhmutov, V., Veklych, Yu., Shpyra, V., & Poliachenko, Ie. (2022). Danube Loess Magnetostratigraphy: A Perspective from Ukraine. International Conference of Young Professionals «GeoTerrace-2022» (pp. 1—5). https://doi.org/10.3997/2214-4609.2022590007.

Hlavatskyi, D., Bonchkovskyi, O., Bakhmutov, V., Cherkes, S., Kravchuk, I., & Poliachenko, I. (2025). Environmental trends in southern Ukraine over the last 450 ka: A multi-proxy study of the Sanzhiyka loess-palaeosol sequence. 17th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment (pp. 1—5). https://eage.in.ua/wp-content/uploads/2025/04/Mon25-032.pdf.

Hrouda, F. (2011). Models of frequency-dependent susceptibility of rocks and soils revisited and broadened. Geophysical Journal International, 187, 12591269. https://doi.org/10.1111/j.1365-246X.2011.05227.x.

Jordanova, D., Laag, C., Jordanova, N., Lagroix, F., Georgieva, B., Ishlyamski, D., & Guyodo, Y. (2022). A detailed magnetic record of Pleistocene climate and distal ash dispersal during the last 800 kyrs —The Suhia Kladenetz quarry loess-paleosol sequence near Pleven (Bulgaria). Global and Planetary Change, 214, 103840. https://doi.org/10.1016/j.gloplacha. 2022.103840.

Łanczont, M., Mroczek, P., Komar, M., Fedorowicz, S., Woronko, B., Nawrocki, J., Frankowski, Z., & Standzikowski, K. (2022). A remarkable last glacial loess sedimentation at Roxolany in the Dniester Liman (Southern Ukraine). Quaternary Science Reviews, 285, 107521. https://doi.org/10.1016/j.quascirev.2022.107521.

Lehmkuhl, F., Nett, J.J., Pötter, S., Schulte, P., Sprafke, T., Jary, Z., Antoine, P., Wacha, L., Wolf, D., Zerboni, A., Hošek, J., Marković, S.B., Obreht, I., Sümegi, P., Veres, D., Zeeden, C., Boemke, B., Schaubert, V., Viehweger, J., & Hambach, U. (2021). Loess landscapes of Europe — Mapping, geomorphology, and zonal differentiation. Earth-Science Reviews, 215, 103496. https://doi.org/10.1016/j.earscirev.2020.103496.

Maher, B.A. (1998). Magnetic properties of modern soils and Quaternary loessic paleosols: Paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 137(1), 25—54. https://doi.org/10.1016/S0031-0182(97)00103-X.

Marković, S.B., Hughes, P.D., Schaetzl, R., Gibbard, P.L., Hao, Q., Radaković, M.G., Vandenberghe, J., Obreht, I., Sipos, G., Laag, C., Gavrilov, M.B., Antić, A., Marković, R.S., Krsmanović, P., Fenn, K., Lukić, T., & Perić, Z.M. (2024). The relationship between the loess stratigraphy in the Vojvodina region of northern Serbia and the Saalian and Rissian Stage glaciations — a review. Boreas, 53(4), 577—592. https://doi.org/10.1111/bor.12646.

Marković, S.B., Stevens, T., Kukla, G.J., Hambach, U., Fitzsimmons, K.E., Gibbard, P., Buggle, B., Zech, M., Guo, Z., Hao, Q., Wu, H., O’Hara Dhand, K., Smalley, I.J., Újvári, G., Sümegi, P., Timar-Gabor, A., Veres, D., Sirocko, F., Vasiljević, D.A., Jary, Z., Svensson, A., Jović, V., Lehmkuhl, F., Kovács, J., & Svirčev, Z. (2015). Danube loess stratigraphy — Towards a pan-European loess stratigraphic model. Earth Science Reviews, 148, 228—258. https://doi.org/10.1016/j.earscirev.2015.06.005.

Matoshko, A. (2021). Loess and its derivatives in a common sedimentary and geomorphic evolution of the East European Plain. Aeolian Research, 53, 100750. https://doi.org/10.1016/j.aeolia.2021.100750.

Matoshko, A., Matoshko, A., & de Leeuw, A. (2019). The Plio-Pleistocene Demise of the East Carpathian Foreland Fluvial System and Arrival of the Paleo-Danube to the Black Sea. Geologica Carpathica, 70(2), 91—112. https://doi.org/10.2478/geoca-2019-0006.

Maxbauer, D.P., Feinberg, J.M., & Fox, D.L. (2016). Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: A review of magnetic methods and challenges. Earth-Science Reviews, 155, 28—48. https://doi.org/10.1016/j.earscirev.2016.01.014.

Molnár, D., Makó, L., Molnár, M., & Sümegi, P. (2024). Case Study from Máza Brickyard (SW-Hungary): Paleoecology and Sediment Accumulation Changes in the Southern Part of the Carpathian Basin. Quaternary, 7(3), Article 3. https://doi.org/10.3390/quat7030035.

Moska, P., Bluszcz, A., Poręba, G., Tudyka, K., Adamiec, G., Szymak, A., & Przybyła, A. (2021). Luminescence Dating Procedures at the Gliwice Luminescence Dating Laboratory. Geochronometria, 48(1), 1—15. https://doi.org/10.2478/geochr-2021-0001.

Namier, N., Gao, X., Hao, Q., Marković, S.B., Fu, Y., Song, Y., Zhang, H., Wu, X., Deng, C., Gavrilov, M.B., & Guo, Z. (2021). Mineral magnetic properties of loess—paleosol couplets of northern Serbia over the last 1.0 Ma. Quaternary Research, 103, 35—48. https://doi.org/10.1017/qua.2021.41.

Nawrocki, J., Bakhmutov, V., Bogucki, A., & Dolecki, L. (1999). The Paleo- and Petromagnetic record in the Polish and Ukrainian Loess-Paleosol Sequences. Physics and Chemistry of the Earth (A), 24, 773—777. https://doi.org/10. 1016/S1464-1895(99)00113-1.

Necula, C., Dimofte, D., & Panaiotu, C. (2015). Rock magnetism of a loess-palaeosol sequence from the western Black Sea shore (Romania). Geophysical Journal International, 202, 1733—1748. https://doi.org/10.1093/gji/ggv250.

Sirenko, O. (2019). Palynological data on the description of the Gelasian and Calabriane analogues in the stratotype section of the Kuyalnik deposits near Kryzhanivka village (Odessa region). Journal of Geology, Geography and Geoecology, 28(4), 727—737. https://doi.org/https://doi.org/10.15421/111968.

Song, Y., Guo, Z., Marković, S., Hambach, U., Deng, C., Chang, L., Wu, J., & Hao, Q. (2018). Magnetic stratigraphy of the Danube loess: a composite Titel-StariSlankamen loess section over the last one million years in Vojvodina, Serbia. Journal of Asian Earth Sciences, 155, 68—80. https://doi.org/10.1016/j.jseaes.2017.11.012.

Song, Y., Hao, Q., Ge, J., Zhao, D., Zhang, Y., Li, Q., Zuo, X., Lü, Y., & Wang, P. (2014). Quantitative relationships between magnetic enhancement of modern soils and climatic variables over the Chinese Loess Plateau. Quaternary International, 334—335, 119—131. https://doi.org/10.1016/j.quaint.2013.12.010.

Sümegi, P., Gulyás, S., Molnár, D., Sümegi, B.P., Almond, P.C., Vandenberghe, J., Zhou, L., Pál-Molnár, E., Törőcsik, T., Hao, Q., Smalley, I., Molnár, M., & Marsi, I. (2018). New chronology of the best developed loess/paleosol sequence of Hungary capturing the past 1.1 ma: Implications for correlation and proposed pan-Eurasian stratigraphic schemes. Quaternary Science Reviews, 191, 144—166. https://doi.org/10.1016/j.quascirev.2018. 04.012.

Sümegi, P., Molnár, D., Gulyás, S., Stevens, T., Makó, L., Cseh, P., Molnár, M., Fitzsimmons, K., Nett, J.J., Hlavatskyi, D., & Lehmkuhl, F. (2022). Comparison of High-Resolution 14C and Luminescence-Based Chronologies of the MIS 2 Madaras Loess/Paleosol Sequence, Hungary: Implications for Chronological Studies. Quaternary, 5(4), 47. https://doi.org/10.3390/quat5040047.

Tecsa, V., Gerasimenko, N., Veres, D., Hambach, U., Lehmkuhl, F., Schulte, P., & Timar-Gabor, A. (2020). Revisiting the chronostratigraphy of Late Pleistocene loess-paleosol sequences in southwestern Ukraine: OSL dating of Kurortne section. Quaternary International, 542, 65—79. https://doi.org/10.1016/j.quaint.2020.03.001.

Tsatskin, A., Heller, F., Gendler, T.S., Virina, E.I., Spassov, S., Du Pasquier, J., Hus, J., Hailwood, E.A., Bagin, V.I., & Faustov, S.S. (2001). A new scheme of terrestrial paleoclimate evolution during the last 1.5 Ma in the western Black Sea region: integration of soil studies and loess magmatism. Physics and Chemistry of the Earth, 26, 911—916. https://doi.org/10.1016/S1464-1895(01)00141-7.

Williams, D.F., Peck, J., Karabanov, E.B., Prokopenko, A.A., Kravchinsky, V., King, J., & Kuzmin, M.I. (1997). Lake Baikal Record of Continental Climate Response to Orbital Insolation During the Past 5 Million Years. Science, 278, 1114—1117.https://doi.org/10.1126/science.278.5340.11.

Zeeden, C., Hambach, U., Obreht, I., Hao, Q., Abels, H.A., Lehmkuhl, F., Gavrilov, M.B., & Marković, S.B. (2018). Patterns and timing of loess-paleosol transitions in Eurasia: Constraints for paleoclimate studies. Global and Planetary Change, 162, 1—7. https://doi.org/10.1016/j.gloplacha.2017.12.021.

Published

2025-06-09

How to Cite

Hlavatskyi, D. (2025). Magnetic enhancement model for southern Ukraine loess on the example of the Middle Pleistocene sequence at Dolynske. Geofizicheskiy Zhurnal, 47(3). https://doi.org/10.24028/gj.v47i3.323058

Issue

Section

Articles