Questions regarding the interpretation of the complex lithosphere model along the RomUkrSeis profile
DOI:
https://doi.org/10.24028/gj.v47i4.327379Keywords:
complex model of the lithosphere, RomUkrSeis profile, nature of electrical conductivity anomalies, Teisseire-Tornquist zone, lithosphere-asthenosphere boundary, deep faultsAbstract
The article considers some issues regarding interpretative the complex geological and geophysical model of the lithosphere along the RomUkrSeis profile. This concerns the nature of anomalous electrical conductivity in the Earth’s crust and upper mantle; an overview of ideas about the depth of the lithosphere-asthenosphere boundary of tectonic structures of different ages; the location and depth distribution of the Teisseire-Tornquist zone; the possibilities of deep faults tracing on the example of the Transcarpathian fault. We establish and consider the connection and nature of electrical conductivity anomalies with structural features revealed by the data of the DSS and the density heterogeneity of the Earth’s crust. It is shown that electrical conductivity anomalies have an electron-fluid nature. It was found that existing data on the depth of the lithosphere-asthenosphere boundary along the RomUkrSeis profile indicate significant fluctuations in its depth in accordance with different tectonic structures and prove the deepening of the asthenosphere’s roof from the Pannonian Basin towards the East European Platform. Modern, multifaceted representations testify to mantle upwelling centered in the Transylvanian Basin, proving the existence of a separate lithospheric zone according to a complex geological-geophysical interpretation model. It is proposed to consider the Teisseire-Tornquist zone as a complex structure 80—110 km wide, characterized by an almost subvertical position with depth (or with a slope to the northeast, which corresponds to the subvertical mantle boundary) and identified with the transition area between tectonic regions of different ages — the Carpathian-Pannonian and the East European platform. The physical parameters of horizontal geophysical heterogeneities and subvertical or inclined contacts between them can be the basis for the delineation of deep faults and their zones, the development of which is determined by the interaction of superficial and deep structures of the lithosphere. We weigh the geological and geophysical data on the extensions of the Transcarpathian deep fault into the Romanian territory and conclude that there are no such extensions.
References
Anikeyev, S., Maksymchuk, V., & Pyrizhok, N. (2021). Reflection of the Transcarpathian deep fault in gravimagnetic fields. In V.Yu. Maksymchuk (Ed.), Geophysics and Geodynamics: Prediction and Monitoring of Geological Medium (pp. 47—50). Lviv: Rastr-7 (in Ukrainian).
Belyavsky, V.V., Burakhovich, T.K., Kulik, S.N., Sukhoi, V.V., & Yegorkin, A.V. (2007). Seismoelectric model of the tectonosphere of the Eurasian folded belt. Proc. of the Institute of Fundamental studies (pp. 26—39). Kiev: Logos (in Russian).
Ben, Ya., Oleshchuk, O., & Kornienko, Ye. (2006). Structural geology of the Moho surface of the western region of Ukraine. Geodynamics, (1), 34—38 (in Ukrainian).
Burakhovich, T.K. (2004). Quasi-three-dimentional model of the Carpathian region. Geofizicheskiy Zhurnal, 26(4), 63—74 (in Russian).
Burakhovich, T.K., & Kulik, S.N. (2009). Three-dimensional geoelectric model of the Earth‘s crust and upper mantle of the western part of the Ukrainian Shield and its slopes. Geofizicheskiy Zhurnal, 31(1), 88—99 (in Russian).
Buryanov, V.B., Gordienko, V.V., Kulik, S.N., & Logvinov, I.M. (1983). Comprehensive geophysical study of the tectonosphere of continents. Kiev: Naukova Dumka, 176 p. (in Russian).
Vasylenko, A.Yu. (2016). Neogene magmatism in the Transcarpathian deep fault system. Extended abstract of candidate’s thesis. Kyiv, 21 p. (in Ukrainian).
Geyko, Yu.V., Gurskiy, D.S., Lykov, L.I., Metalidi, V.S., Pavlyuk, V.N., Prikhodko, V.L., Tsymbal, S.N., & Shymkiv, L.V. (2006). Perspectives of basement diamond productivity of Ukraine. Kiev-Lvov: Centr Evropy, 200 p. (in Russian).
Gintov, O.B., Tsvetkova, T.О., Bugaenko, I.V., Zayats, L.N., & Murovska, G.V. (2022). The deep structure of the Trans-European Suture Zone (based on seismic survey and GSR data) and some insights in to its development. Geofizicheskiy Zhurnal, 44(6), 63—87. https://doi.org/10.24028/gj.v44i6.273640 (in Ukrainian).
Hnylko, O.M. (2012). Tectonic zoning of the Carpathians in term`s of the terrane tectonics article 2. The Flysch Carpathian — ancient accretionary prism. Geodynamics, (1), 67—78. https://doi.org/10.23939/jgd2012.01.067 (in Ukrainian).
Gordienko, V.V., Gordienko, I.V., Zavgorodnyaya, O.V., Kovachikova, S., Logvinov, I.M., Tarasov, V.N., & Usenko, O.V. (2012). Volyn-podolskaya plate (Geophysics, deep processes). Kiev: Naukova Dumka, 198 p. (in Russian).
Gordienko, V.V., Gordienko, I.V., Zavgorodnyaya, O.V., Kovachikova, S., Logvinov, I.M., Tarasov, V.M., & Usenko, O.V. (2011). Ukrainian Carpathians (geophysics, deep processes). Kiev: Logos, 129 p. (in Russian).
Entin, V.A. (2005). Geophysical basis of the Tectonic map of Ukraine, scale 1:1 000 000. Geofizicheskiy Zhurnal, 27(1), 74—84 (in Russian).
Zhamaletdinov, A.A., & Kulik, S.N. (2012). First rate anomalies of electro-conductivity on the Globe. Geofizicheskiy Zhurnal, 34(4), 22—39. https://doi.org/10.24028/gzh.0203-3100.v34i4.2012.116747 (in Russian).
Krupskyi, Yu.Z., & Vyslotska, O.I. (2014). Researches of length of the zone of Teisseyre-Tornkquist on the territory of the Western Ukraine. Geodynamics, (1), 34—42 (in Ukrainian).
Kutas, R.I. (2016). Geothermal Conditions andMesozoic-Cainozoic Evolution of the Carpatho-Pannonian Region. Geofizicheskiy Zhurnal, 38(5), 75—107. https://doi.org/10.24028/gzh.0203-3100.v38i5.2016.107823 (in Russian).
Kutas, R. (2014). Thermal flow and geothermic models of the earth’s crust of the Ukrainian Carpathians. Geofizicheskiy Zhurnal, 36(6), 3—27. https://doi.org/10.24028/gzh.0203-3100.v36i6.2014.111016 (in Russian).
Makarenko, I., Burahovich, T., Kozlenko, M., Murovska, A., Kozlenko, U., & Savchenko, O. (2024). RomUkrSeis profile: a model of the deep structure of the lithosphere and itsgeological and geophysical interpretation. P. 1. Density heterogeneity and electrical conductivity Geofizicheskiy Zhurnal, 46(6), 80—107. https://doi.org/10.24028/gj.v46i6.314130 (in Ukrainian).
Makarenko, I., Burakhovych, T., Kozlenko, M., Murovskaya, G., Kozlenko, Y., & Savchenko, O. (2025). RomUkrSeis profile: a model of the deep structure of the lithosphere and its geological and geophysical interpretation. P. II. The nature of geophysical heterogeneities based on complex analysis. Geofizicheskiy Zhurnal, 47(1), 81—108. https://doi.org/10.24028/gj.v47i1.317035 (in Ukrainian).
Maksymchuk, V.Yu., Anikeyev, S.G., & Kuderavets, R.S. (2024). Display of the Teisseyre Tornquist zone in the gravity and magnetic fields on the territory of Ukraine. Materials of the All-Ukrainian Scientific Conference «Geological structure and history of the geological development of the Ukrainian shield» (to the 100th anniversary of the birth of Academician of the National Academy of Sciences of Ukraine M.P. Shcherbak) (pp. 262—266). https://doi.org/10.30836/gbhgd.2024.55 (in Ukrainian).
Monchak, L.S., & Anikeyev, S.G. (2017). Reflection of the tectonic structure of the western region of Ukraine in gravimagnetic fields. Geodynamics, (2), 104—118. https://doi.org/10.23939/jgd2017.02.104 (in Ukrainian).
Orlyuk, M., Bakarjieva, M., & Marchenko, A. (2022). Magnetic characteristics and tectonic structure of the Earth’s crust of the Carpathian oil and gas region as a component of complex hydrocarbon criteria. Geofizicheskiy Zhurnal, 44(5), 77—105. https://doi.org/10.24028/gj.v44i5.272328 (in Ukrainian).
Starostenko, V.I., & Gintov, O.B. (Eds.). (2018). Essays on Geodynamics of Ukraine. Kiev: VI EN EY, 465 p. (in Russian).
Palyuk, M., Shlapinsky, V., Medvedev, A., Rizun, B., & Ternavsky, M. (2019). Problematic aspects of the formation of the Ukrainian segment of the Carpathians. Geology & Geochemistry of Combustible Minerals, (3), 5—24. https://doi.org/10.15407/ggcm2019.03.005 (in Ukrainian).
Tretyak, K.R., Maksimchuk, V.Yu., & Kutas, R.I. (Eds.). (2015). Modern geodynamics and geophysical fields of the Carpathians and adjacent territories. Lviv: Publishing House of Lviv Polytechnic, 420 p. (in Ukrainian).
Tsvetkova, T.A., Bugaenko, I.V., & Zaets, L.N. (2016). Velocity divisibility of the mantle beneath the Ukrainian shield. Geofizicheskiy Zhurnal, 38(4), 75—87. https://doi.org/10.24028/gzh.0203-3100.v38i4.2016.107802 (in Russian).
Tsvetkova, T.A., Bugaenko, I.V., & Zaets, L.N. (2021). Speed structure of the mantle of the border of the Eastern European and West European platforms. Geofizicheskiy Zhurnal, 43(5), 181—191. https://doi.org/10.24028/gzh.v43i5.244080 (in Russian).
Tsymbal, S.N. (2002). The composition of the upper mantle beneath the Ukrainian Shield. In Geology and magmatism of the Precambrian of the Ukrainian Shield (pp. 215—218). Kiev (in Russian).
Shlapinskyi, V., Pavlyuk, M., Savchak, O., & Ternavskyi, M. (2024). A new model of the formation of the foundation of the Transcarpathian foredeep (in the context of prospects for oil and gas presence). Geology & Geochemistry of Combustible Minerals, (3-4), 5—23. https://doi.org/10.15407/ggcm2024.195-196.005(in Ukrainian).
Shumlyanska, L.O. (2009). Velocity structure of the mantle under the territory of Ukraine by results of seismic tomography data. Extended abstract of candidate’s thesis. Kyiv, 18 p. (in Ukrainian).
Ádám, A., Szarka, L., Novák, A., & Wesztergom, V. (2017). Key results on deep electrical conductivity anomalies in the Pannonian Basin (PB), and their geodynamic aspects. Acta Geodaetica et Geophysica, 52, 205—228. https://doi.org/10.1007/s40328-0160192-2.
Bogdanova, S.V., Gorbatschev, R., & Garetsky, R.G. (2016). EUROPE|East European Craton. In Reference Module in Earth Systems and Environmental Sciences (pp. 118). https://doi.org/10.1016/B978-0-12-409548-9.10020-X.
Chakraborty, S. (2008). Diffusion in solid silicates: a tool to track timescales of processes comes of age. Annual Review of Earth and Planetary Sciences, 36, 153—190. https://doi.org/10.1146/annurev.earth.36.031207.124125.
Chalot-Prat, F., & Girbacea, R. (2000). Partial delamination of continental mantle lithosphere, uplift-related crust—mantle decoupling, volcanism and basin formation: a new model for the Pliocene—Quaternary evolution of the southern East-Carpathians, Romania. Tectonophysics, 327, 83—107. https://doi.org/10.1016/S0040-1951(00)00155-4.
Demetrescu, C., Nielsen, S.B., Ene, M., Şerban, D.Z., Polonic, G., Andreescu, M., Pop, A., & Balling, N. (2001). Lithosphere thermal structure and evolution of the Transylvanian Depression — insights from new geothermal measurements and modelling results. Physics of the Earth and Planetary Interiors, 126(3-4), 249—267. https://doi.org/10.1016/S0031-9201(01)00259-X.
Dererova, J., Zeyen, H., Bielik, M., & Salman, K. (2006). Application of integrated geophysical modeling for determination of the continental lithospheric thermal structure in the eastern Carpathians. Tectonics, 25, TC3009. https://doi.org/10.1029/2005TC001883.
Gallardo, L.A., & Meju, M.A. (2007). Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic travel-time data for structural and lithological classification. Geophysical Journal International, 169(3), 12611272. https://doi.org/10.1111/.1365- 246X.2007.03366.x.
Horvath, F., & Galacz, A. (Eds.). (2006). The Carpathian-Pannonian Region: A Review of Mesozoic-Cenozoic Stratigraphy and Tectonics. Budapest: Hantken Press, 625 p.
Jones, A.G., Plomerova, J., Korja, T., Sodoudi, F., & Spakman, W. (2010). Europe from the bottom up: A statistical examination of the central and northern European lithosphere-asthenosphere boundary from comparing seismological and electromagnetic observations. Lithos, 120, 14—29. https://doi.org/10.1016/j.lithos.2010.07.013.
Karato, S.I. (2019). Some remarks on hydrogen-assisted electrical conductivity in olivine and other minerals. Progress in Earth and Planetary Science, 6, 55. https://doi.org/10.1186/s40645-019-0301-2.
Korja, T. (2007). How is the European Lithosphere Imaged by Magnetotellurics? Surveys Geophysics, 28, 239—272. https://doi.org/10.1007/s10712-007-9024-9.
Lin, W., Yang, B., Han, B., & Hu, X.A. (2023). Review of Subsurface Electrical Conductivity Anomalies in Magnetotelluric Imaging. Sensors, 23,
https://doi.org/10.3390/s23041803.
Martin, M., Wenzel, F., & CALIXTO Working Group. (2006). High-resolution teleseismic body wave tomography beneath SE-Romania-II. Imaging of a slab detachment scenario. Geophysical Journal International, 164(3), 579—595. https://doi.org/10.1111/j.1365-246X.2006. 02884.x.
Mikołajczak, M., Mazur, S., & Gągała, Ł. (2019). Depth-to-basement for the East European Craton and Teisseyre-Tornquist Zone in Poland based on potential field data. International Journal of Earth Sciences, 108, 547—567. https://doi.org/10.1007/s00531-018-1668-9.
Molin, P., Fubelli, G., Nocentini, M., Sperini, S., Ignat, P., Grecu, F., & Dramis, F. (2012). Interaction of mantle dynamics, crustal tectonics, and surface processes in the topography of the Romanian Carpathians: A geomorphological approach. Global and Planetary Change, (90-91), 58—72. https://doi.org/10.1016/j.gloplacha.2011.05.005.
Narkiewicz, M., Maksym, A., Malinowski, M., Grad, M., Guterch, A., Petecki, Z., Probulski, J., Janik, T., Majdański, M., Środa, P., Czuba, W., Gaczyński, E., & Jankowski, L. (2015). Transcurrent nature of the TeisseyreTornquist Zone in Central Europe: results of the POLCRUST01 deep reflection seismic profile. International Journal of Earth Sciences, 104, 775—796. https://doi.org/10.1007/s0053101411164.
Nicula, A-M., Ionescu, A., Pop, I-C., Roba, C., Forray, F.L., Orăşeanu, I., & Baciu, C. (2021). Geochemical Features of the Thermal and Mineral Waters from the Apuseni Mountains (Romania). Frontiers in Earth Science, 9, 648179. https://doi.org/10.3389/feart.2021.648179.
Nolet, G. (2011). Upper mantle structure. In H. Gupta (Ed.), Encyclopedia of Solid Earth Geophysics (pp. 159—165). Springer Earth Science Series. https://doi.org/10.1007/978-90-481-8702-7_44.
Novák, A., Rubóczki, T., Wesztergom, V., Radulian, M., Szakács, A., Csaba, Molnár, C., & Kovács, I.J. (2024). Lithospheric scale cross-section through the Transylvanian Basin: A joint geophysical and geological survey. Geologica Carpathica, 75(3), 195—211. https://doi.org/10.31577/GeolCarp.2024.11.
Özaydın, S., & Selway, K. (2020). MATE: An Analysis Tool for the Interpretation of Magnetotelluric Models of the Mantle. Geochemistry, Geophysics, Geosystems, 21. https://doi.org/10.1029/2020GC009126.
Pashkevich, I., Orlyuk, M., Bakarzhieva, M., & Marchenko, A. (2025). Magnetic model and heterogeneity of the crystalline crust of the southwestern boundary of the East European Сraton. Geofizicheskiy Zhurnal, 47(2), 124—129. https://doi.org/10.24028/gj.v47i2.322564.
Popescu, B.M. (2021). Transcarpathian Petroleum Province in Romania. Geo-Eco-Marina, 27, 5—35. https://doi.org/10.5281/zenodo.5801082.
Rychert, C., Harmon, N., Constable, S., & Wang, S. (2020). The nature of the Lithosphere-Asthenosphere Boundary. Journal of Geophysical Research: Solid Earth, 125(10), e2018JB016463. https://doi.org/10.1029/2018JB016463.
Seghedi, I., Maţenco, L., Downes, H., Mason, P.R.D., Szakács, A,. & Pécskay, Z. (2011). Tectonic significance of changes in post-subduction Pliocene-Quaternary magmatism in the south east part of the Carpathian-Pannonian Region, Tectonophysics, 502(1-2), 146—157. https://doi.org/10.1016/j.tecto.2009.12.003.
Selway, K. (2014).On the Causes of Electrical Conductivity Anomalies in Tectonically Stable Lithosphere. Surveys in Geophysics, 35, 219—257. https://doi.org/10.1007/s10712-013-9235-1.
Selway, K., O’Donnell, J.P., & Özaydin, S. (2019). Upper mantle melt distribution from petrologically constrained magnetotellurics. Geochemistry, Geophysics, Geosystems, 20, 3328—3346. https://doi.org/10.1029/2019GC008227.
Starostenko, V., Janik, T., Kolomiyets, K., Czuba, W., Sroda, P., Lysynchuk, D., Grad, M., Kovács, I., Stephenson, R., Lysynchuk, D., Thybo, H., Artemieva, I.M., Omelchenko, V., Gintov, O., Kutas, R., Gryn, D., Guterch, A., Hegedűs, E., Komminaho, K., Legostaeva, O., Tiira, T., & Tolkunov, A. (2013). Seismic velocity model of the crust and upper mantle along profile PANCAKE across the Carpathians between the Pannonian Basin and the East European Craton. Tectonophysics, 608, 1049—1072. https://doi.org/10.1016/j.tecto.2013.07.008.
Starostenko, V., Janik, T., Mocanu, V., Stephenson, R., Yegorova, T., Amashukeli, T., Czuba, W., Środa, P., Murovskaya, A., Kolomiyets, K., Lysynchuk, D., Okoń, J., Dragut, A., Omelchenko, V., Legostaieva, O., Gryn, D., Mechie, J., & Tolkunov, A. (2020). RomUkrSeis: Seismic model of the crust and upper mantle across the Eastern Carpathians — From the Apuseni Mountains to the Ukrainian Shield. Tectonophysics, 794, 228620. https://doi.org/10.1016/j.tecto.2020.228620.
Tiliţă, M., Lenkey, L., Maţenco, L., Horvath, F., Suranyi, G., & Cloetingh, S. (2018). Heat Flow Modelling in the Transylvanian basin: Implications for the Evolution of the Intra Carpathian Area. Global and Planetary Change, 171, 148—166. https://doi:10.1016/j.gloplacha.2018. 07.007.
Unsworth, M., & Rondenay, S. (2013). Mapping the distribution of fluids in the crust and lithospheric mantle utilizing geophysical methods. In Metasomatism and the Chemical Transformation of Rock (pp. 535—598). Berlin/Heidelberg: Springer, Germany. https://doi.org/ 10.1007/978-3-642-28394-9_13.
Wang, D., Karato, S.I., & Jiang, Z. (2013). An experimental study of the influence of graphite on the electrical conductivity of olivine aggregates. Geophysical Research Letters, 40, 2028—2032. https://doi.org/10.1002/grl.50471.
Wang, D., Mookherjee, M., Xu, Y., & Karato, S.I. (2006). The effect of water on the electrical conductivity of olivine. Nature, 443, 977—980. https://doi.org/10.1038/nature05256.
Wannamaker, P.E. (2005). Anisotropy versus heterogeneity in continental solid earth electromagnetic studies: Fundamental response characteristics and implications for physicochemical state. Surveys in Geophysics, 26, 733—765. https://doi.org/10.1007/s10712-005-1832-1.
Wannamaker, P.E. (2010). Water from stone. Nature Geosciences, 3, 10—11. https://doi.org/10. 1038/ngeo732.
Yoshino, T., Matsuzaki, T., & Katsura, T. (2006). Electrical conductivity of mantle minerals. Retrieved from https://www.researchgate.net/publication/253297405.
Żytko, K. (1997). Electrical conductivity anomaly of the Northern Carpathians and the deep structure of the orogen. Annales Societatis Geologorum Poloniae, 67, 25—43.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tatiana Burakhovych, Iryna

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Scimago Journal & Country Rank

