Distribution of thermodynamic parameters in the Dnieper-Donetsk basin. Relationship with structure and oil and gas content.

Authors

  • Olga Usenko S. Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine
  • Andrii Usenko S. Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gj.v47i5.336348

Keywords:

Dnieper Donetsk basin, heat flow, gradient, modern hydrothermal activity, fault zones, hydrocarbon deposits

Abstract

Calculations of geothermal parameters of the Dnieper-Donetsk basin have been carried out. In all fields in part of wells the geothermal gradient is stable and is 20—21 °C/km, and in some it changes. It is negative to the west of the Chernihiv segment, where there are no fields. In its eastern part and the and western part of the Lokhvytsia segment, both positive and negative changes have been observed. In the eastern part of the Lokhvytsia segment and in the near-border parts of the Izyum block, they are exclusively positive.

Heat flux within the depression varies from 36 to 56 mW/m2, but over most of the territory it is 39—46 mW/m2. The most common values are 40—42 mW/m2. At the border of the Chernihiv and Lokhvytsia segments, in the southern near-border part and between the Lokhvytsia and Verkhovtsiv-Lgov fault zones (FZ), HF is increased to 45—48 mW/m2. The central part of the Izyum segment is characterized by low HF values (38—40 mW/m2). A major increase happens to the east of Western Azov Region towards Donbas.

The spatial distribution of heat flux and temperatures at a depth of 3000 m correlates with the location of the foundation FZ. To the west of the Lokhvytsia FZ, HF changes in areas where the north-eastern stretch zone intersects with the meridional zones. In the triangle between the Lokhvytsia to Verkhovtsiv-Lgov FZs, the influence of the latitudinal FZs (Kyiv—Hadyach and Andrushivka) is also evident. In the central part of the Izyum segment, the distribution of HF corresponds with the location of the latitudinal Starobilsk-Zhmerynka and longitudinal Axial FZs.

It is suggested that the increase in the gradient is a parameter of the thermal field that reflects modern tectonic and geological events: the recovery of permeable zones in the sedimentary strata which are related to the faults in the foundation and sedimentary layers, and temperature increase because of the injection of thermal hydrocarbonate-sodium deep waters. The depth of the gradient change is close to the depth of the strata containing hydrocarbon deposits.

In the Lokhvytsia segment, gradient changes in the Lower Carboniferous layers, which contain hydrocarbon deposits. In Izyum, the wells do not reach the Lower Carboniferous sediments, and the hydrodynamic regime is caused by the spread of impermeable salt diapirs.

Author Biography

Olga Usenko, S. Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine, Kiev, Ukraine

Doctor

References

Arsiriy, Yu.A. (Ed.). (1984). Atlas of the geological structure and oil and-gas potential of the Dnieper-Donetsk depression. Kiev: Publ. of the Mingeo USSR, 190 p. (in Russian).

Burakhovych, Т.К., & Kushnir, A.M. (2024). Geoelectrical inhomogeneities of the lithosphere of the Pripyat-Dnieper-Donetsk basin along the GEORIFT 2013 profile. Geofizychnyi Zhurnal, 46(3), 32—49. https://doi.org/10.24028/gj.v46i3.299169 (in Ukrainian).

Shpak, P.F. (Ed.). (1989a). Geology and oil and gas capacity of the Dnieper-Donets Basin. Deep structure and geotectonic development. Kyiv: Naukova Dumka, 208 p. (in Russian).

Shpak, P.F. (Ed.). (1989б). Geology and oil and gas capacity of the Dnieper-Donets Basin. Oil and gas capacity. Kyiv: Naukova Dumka, 204 p. (in Russian).

Gintov, O.B. (2005). Field tectonophysics and it supplications in studying deformations of the Earth’s crust of Ukraine. Kiev: Phoenix, 572 p. (in Russian).

Gordienko, V.V., Gordienko, I.V., Zavhorodnyaya, O.V., Kovachykova, S., Logvinov, I.M., Pek, Y., Tarasov, V.N., & Usenko, O.V. (2006). Dnieper-Donets Basin (geophysics, deep processes). Kiev: Korvin Press, 144 p. (in Russian).

Gordienko, V.V., Gordienko, I.V., Zavhorodnyaya, O.V., Logvinov, I.M., Tarasov, V.N., & Usenko, O.V. (2004). Geothermal atlas of Ukraine. Kyiv: Publ. of the Institute of Geophysics of the National Academy of Sciences of Ukraine, 60 p. (in Russian).

Krylov, I.A. (Ed.). (1988). Map of broken and main lineament zones of the southwest of the USSR (using space survey materials). Scale 1:1000 000. Moscow: MDGC, 4 р. (in Russian).

Galetskiy, L.S. (Ed.). (1992). Map of the Precambrian structural zoning of the southwestern part of East European Platform. 1:1000000. Kyiv, 6 р. (in Russian).

Kutas, R.I. (1978). The field of heat flows and the thermal model of the Earth’s crust. Kiev: Naukova Dumka, 140 p. (in Russian).

Kutas, R.I., & Gordienko, V.V. (1971). Thermal field of Ukraine. Kiev: Naukova Dumka, 141 p. (in Russian).

Lukin, A.E. (2005). Deep hydrogeological inversion as a global synergistic phenomenon: theoretical and applied aspects. Article 2. Tectono-geodynamic aspects of deep hydrogeological inversion. Geological Journal, (1), 50—67 (in Russian).

Lukin, A.E. (1997). Lithogeodynamic factors of oil and gas accumulation in avlacogenic basins. Kyiv: Naukova Dumka, 224 p. (in Russian).

Lukin, A.E., & Shestopalov, V.M. (2021). Prospects for exploration of hydrogen fields in riftogene structures of platforms (the case of the Dnieper-Donets Aulacogene). Geofizicheskiy Zhurnal, 43(4), 3—41. https://doi.org/10.24028/gzh.v43i5.244038 (in Russian).

Sollogub, V.B. (1986). Lithosphere of Ukraine. Kiev: Naukova Dumka, 183 p. (in Russian).

Starostenko, V.I., Pashkevich, I.K., Makarenko, I.B., Kuprienko, P.Ya., & Savchenko, A.S. (2017a). Heterogeneity of the lithosphere of the Dnieper-Donets Basin and its geodynamic consequences. I. Deep structure. Geodynamics, (1), 125—138 (in Russian).

Starostenko, V.I., Pashkevich, I.K., Makarenko, I.B., Kuprienko, P.Ya., & Savchenko, A.S. (2017б). Heterogeneity of the lithosphere of the Dnieper-Donets Basin and its geodynamic consequences. II. Geodynamic interpretation. Geodynamics, (2), 83—103 (in Russian).

Starostenko, V.I., Rusakov, O.M., Pashkevich, I.K., Kutas, R.I., Orlyuk, M.I., Kuprienko, P.Ya., Makarenko, I.B., Maksimchuk, P.Ya., Kozlenko, Yu.V., Kozlenko, M.V., Legostaeva, O.V., Lebed, T.V., & Savchenko, A.S. (2015). Tectonics and hydrocarbon potential of the crystalline basement of the Dnieper-Donets Basin. Kyiv: Galaktika, 211 p. (in Russian).

Usenko, A.P. (2017). Distribution of thermal characteristics in the central part of the southwestern board of Dnieper-Donetsk basin. Dopovidi NAN Ukrainy, (6), 58—61 (in Ukrainian).

Usenko, A.P., & Usenko, O.V. (2020). Analysis of geothermic parameters of oil-and gas deposits of the central part of the Dnieper-Donets depression. Geofizicheskiy Zhurnal, 42(3), 128—146. https://doi.org/10.24028/gzh.0203-3100.v42i3.2020.204705 (in Ukrainian).

Usenko, A.P., & Usenko, O.V. (2021). Determination of geothermal parameters that are responsible for modern geothermal activity in the Dnieper-Donetsk Depression and the Donetsk Basin. Dopovidi NAN Ukrainy, (6), 97—107. https://doi.org/10.15407/dopovidi2021.06.09 (in Ukrainian).

Usenko, O.V., Makarenko, I.B., Savchenko, O.S., & Usenko, A.P. (2025). Comprehensive analysis of correlation between structural and material heterogeneities of the different layers of lithosphere, Dnipro-Donetsk basin. Geofizychnyi Zhurnal, 47(2), 333—339. https://doi.org/10.24028/gj.v47i2.322573 (in Ukrainian).

Usenko, O.V., & Usenko, A.P. (2022). The display of modern degassing in the heat flow and deep structure (on the example of Lokhvytsky block of Dnieper-Donetsk basin). Geofizicheskiy Zhurnal, 44(5), 54—76. https://doi.org/10.24028/gj.v44i5.272327 (in Ukrainian).

Usenko, A., & Usenko, O. (2018). Analysis of geothermal parameters in the northwestern part of DDB. LAP LAMBERT Academic Publishing, 141 p. (in Russian).

Shestopalov, V.M., Lukin, A.E., Zgonnyk, V.A., Makarenko, A.N., Laryn, N.V., & Boguslavskiy, A.S. (2018). Essays on the degassing of the Earth. Kiev: Itekservice, 632 p. (in Russian).

Очерки дегазации Земли. Киев: Ітексервис, 2018, 632 с.

Ilchenko, T. (1996). Dnieper-Donets Rift: deep structure and evolution from DSS profilling. Tectonophysics, 268, 83—98. https://doi.org/10. 1016/S0040-1951(96)00221-1.

Shestopalov, V., Lukin, O., Starostenko, V., Ponomarenko, O., Tsvetkova, T., Koliabina, I., Makarenko, O., Usenko, O., Rud, O., Onoprienko, A., Saprykin, V., & Vardapelian, R. (2021). Prospects for exploration of hydrogen fields in riftogene structures of platforms (the case of the Dnieper-Donets Aulacogene). Geofizicheskiy Zhurnal, 43(5), 3—18. https://doi.org/10.24028/gzh.v43i5.244038.

Starostenko, V., Janik, T., Yegorova, T., Czuba, W., Środa, P., Lysynchuk, D., Aizberg, R., Garetsky, R., Karataev, G., Gribik, Y., Farfuliak, L., Kolomiyets, K., Omelchenko, V., Komminaho, K., Tiira, T., Gryn, D., Guterch, A., Legostaeva, O., Thybo, H., & Tolkunov, A. (2018). Lithospheric structure along wide-angle seismic profile GEORIFT2013 in Pripyat-Dnieper-Donets Basin (Belarus and Ukraine). Geophysical Journal International, 212, 1932—1962. https://doi.org/10.1093/gji/ggx509.

Published

2025-10-21

How to Cite

Usenko, O., & Usenko, A. (2025). Distribution of thermodynamic parameters in the Dnieper-Donetsk basin. Relationship with structure and oil and gas content. Geofizicheskiy Zhurnal, 47(5). https://doi.org/10.24028/gj.v47i5.336348

Issue

Section

Articles