Kinematic and dynamic processing of seismic data along EUROBRIDGE’97 profile

Authors

  • Katerina Kolomiyets S. Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine, Kiev, Ukraine, Ukraine http://orcid.org/0000-0003-0964-6214
  • Oleksandra Verpakhovska S. Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine,Kiev,Ukraine, Ukraine
  • Oksana Chorna S. Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine,Kiev,Ukraine, Ukraine
  • Dmytro Lysynchuk S. Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine,Kiev,Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gj.v47i6.339540

Keywords:

kinematic processing, dynamic processing, migration of reflected/refracted waves, seismic modeling, wide-angle reflection and refraction

Abstract

The article presents the principal procedures for kinematic and dynamic processing of wavefields observed using the deep Wide-Angle Reflection and Refraction seismic profiling method. It demonstrates that combining their results enhances the level of subsequent interpretation.

Kinematic processing of seismic data is a conventional approach, typically based on ray-tracing modeling, which produces a calculated velocity model of the medium. These velocity parameters are the input data for dynamic processing.

Dynamic processing operates with the amplitude-frequency and phase characteristics of the wavefield, involving the construction of an image of the deep section with its existing interfaces and tectonic features of the study area. In global practice, the main procedures of dynamic processing include various migration techniques; however, they are not designed for processing WARR data recorded at large distances of several hundred kilometers from the source. At the S. Subbotin Institute of Geophysics of National Academy of Sciences of Ukraine, a specialized finite-difference migration method for reflected/refracted waves has been developed specifically for Wide-Angle Reflection and Refraction data processing.

Both kinematic and dynamic processing were applied to wavefields recorded along the EUROBRIDGE’97 seismic profile. Two alternative velocity models are presented, showing a similar overall structure along the profile down to a depth of 15 km, along with a migrated image to the same depth obtained using the finite-difference migration method for reflected/refracted waves.

Application of dynamic processing to the seismic dataset has, for the first time, produced an image of the deep structure of the crystalline basement along the EUROBRIDGE’97 profile, providing additional structural details to the results of kinematic processing.

References

Červený, V., & Pšenčík, I. (1984). SEIS83 — Numerical modelling of seismic wave fields in 2-D laterally varying layered structures by the ray method. In E.R. Engdal (Ed.), Documentation of Earthquake Algorithms (pp. 36—40). Rep. SE-35, World Data Center A for Solid Earth Geophysics, Boulder, USA.

Hole, J.A. (1992). Nonlinear high-resolution three-dimensional seismic travel time tomography. Journal of Geophysical Research: Solid Earth, 97(B5), 6553—6562. https://doi.org/10. 1029/92JB00235.

Ilchenko, T.V. (1985). Methodology for Determining Velocity Models Based on Profile Hodographs of Waves in DSS. Geofizicheskiy Zhurnal, 7(1), 40—45 (in Russian).

Ilchenko, T.V. (2002). Research Results Using DSS Method along the Eurobridge-97 Transect. Geofizicheskiy Zhurnal, 24(3), 36—50 (in Russian).

Janik, T., Środa, P., Czuba, W., & Lysynchuk, D. (2016). Various Approaches to Forward and Inverse Wide-Angle Seismic Modelling Tested on Data from DOBRE-4 Experiment. Acta Geophysica, 64, 1989—2019. https://doi.org/10. 1515/acgeo-2016-0084.

Janik, T., Starostenko, V., Aleksandrowski, P., Yegorova, T., Czuba, W., Środa, P., Murovskaya, A., Zayats, K., Mechie, J., Kolomiyets, K., Lysynchuk, D., Wójcik, D., Omelchenko, V., Legostaeva, O., Głuszyński, A., Tolkunov, A., Amashukeli, T., Gryn, D., & Chulkov, S. (2022). Lithospheric Structure of the East European Craton at the Transition from Sarmatia to Fennoscandia Interpreted from the TTZ-South Seismic Profile (SE Poland to Ukraine). Minerals, 12, 112. https://doi.org/10.3390/min 12020112.

Kendzera, O.V., Omelchenko, V.D., Lysynchuk, D.V., Legostayeva, O.V., Gryn, D.M., Kolomiets, K.V., Tolkunov, A.P., & Chulkov, S.S. (2019). Deep structure of the lithosphere and seismic hazard in Ukraine. Kyiv: Naukova Dumka, 197 p. (in Ukrainian).

Klingelhoefer, F., Roest, W., & Graindorge, D. (2021). Raw data from a wide-angle seismic survey offshore French Guyana and Surinam. SEANOE. https://doi.org/10.17882/79396.

Lu, C., Liu, Y., & Gao, J. (2025). Reverse Time Migration Method for Joint Imaging of Multiples and Primaries in Vertical Seismic Profiling. Applied Sciences, 15(5), 2820. https://doi.org/10.3390/app15052820.

Malinowski, M. (2013). Models of the Earth’s crust from controlled-source seismology — where we stand and where we go? Acta Geophysica, 61(6), 1437—1456. https://doi.org/10.2478/s11600-013-0156-7.

Murovskay, A., Verpakhovska, O., Hnylko, O., Chorna, O., & Yegorova, T. (2023). Transcarpathian Depression: Study of Low-Velocity Zones in the Earth’s Crust Based on the Seismic Regional Profiles Data. Geofizicheskiy Zhurnal, 45(2), 30—43. https://doi.org/10.24028/gj. v45i2.278310.

Pylypenko, V.N., & Sokolovskaya, T.P. (1990). Formation of Images of Refracting Boundaries Using the Finite-Difference Method. Geophysical Journal, 12(5), 48—54 (in Russian).

Ryberg, T., Haberland, Ch., Weber, M., Bauer, K., Wawerzinek, B., Stiller, M., Krawczyk, Ch., Zanetti, A., Ziberna, L., Hetényi, G., & Müntener, O. (2023). Wide-angle seismic data («fixed spread») from the Oct. 2020 3D survey across the Ivrea Zone, Italy (project SEIZE). GFZ Data Services. https://doi.org/10.5880/GIPP.202016.

Shiraishi, K., No, T. & Fujie, G. (2022). Seismic reflection imaging of deep crustal structures via reverse time migration using offshore wide-angle seismic data on the eastern margin of the Sea of Japan. Earth Planets and Space, 74, 28. https://doi.org/10.1186/s40623-022-01590-w.

Starostenko, V., Janik, T., Mocanu, V., Stephenson, R., Yegorova, T., Amashukeli, T., Czuba, W., Środa, P., Murovskaya, A., Kolomiyets, K., Lysynchuk, D., Okoń, J., Dragut, A., Omelchenko, V., Legostaieva, O., Gryn, D., Mechie, J., & Tolkunov, A. (2020). RomUkrSeis: Seismic model of the crust and upper mantle across the Eastern Carpathians — From the Apuseni Mountains to the Ukrainian Shield. Tectonophysics, 794. https://doi.org/10.1016/j.tecto.2020.228620.

Starostenko, V., Janik, T., Murovskaya, A., Czuba, W., Środa, P., Yegorova, T., Aleksandrowski, P., Verpakhovska, O., Kolomiyets, K., Lysynchuk, D., Amashukeli, T., Burakhovych, T., Wójcik, D., Omelchenko, V., Legostaeva, O., Gryn, D., & Chulkov, S. (2024). Seismic lithospheric model across Ukrainian Shield from the Carpathians to the Dnieper-Donets Basin and its tectonic interpretation. Tectonophysics, 892, 230540. https://doi.org/10.1016/j.tecto.2024.230540.

Starostenko, V., Janik, T., Yegorova, T., Czuba, W., Środa, P., Lysynchuk, D., Aizberg, R., Garetsky, R., Karataev, G., Gribik, Y., Farfuliak, L., Kolomiyets, K., Omelchenko, V., Komminaho, K., Tiira, T., Gryn, D., Guterch, A., Legostaeva, O., Thybo, H., & Tolkunov, A. (2018). Lithospheric structure along wide-angle seismic profile GEORIFT 2013 in Pripyat-Dnieper-Donets Basin (Belarus and Ukraine). Geophysical Journal International, 212(3), 1932—1962. https://doi.org/10.1093/gji/ggx509.

Thybo, H., Janik, T., Omelchenko, V.D., Grad, M., Garetsky, R.G., Belinsky, A.A., Karatayev, G.I., Zlotski, G., Knudsen, E., Sand, R., Yliniemi, J., Tiiro, T., Luosto, U., Komminaho, K., Giese, R., Guterch, A., Lund, C.E., Kharitonov, O.M., Ilchenko, T.V., Lysynchuk, D.V., Skobolev, V.M., & Doody, J.J. (2003). Upper lithospheric seismic velocity structure across the Pripyat Trough and the Ukrainian Shield along the EUROBRIDGE’97 profile. Tectonophysics, 371(1-4), 41—79. https://doi.org/10.1016/S0040-1951(03)00200-2.

Verpakhovska, A.O. (2021). Technique for the imaging crystalline basement according to the DSS data. Geofizicheskiy Zhurnal, 43(5), 127—149. https://doi.org/10.24028/gzh.v43i5.244076 (in Russian).

Verpakhovska, O., & Chorna, O. (2023). The correctness of the finite-difference problems of the time- and wave fields continuation for the migration image of the basement boundary. Geofizicheskiy Zhurnal, 45(6), 36—49. https://doi.org/10.24028/gj.v45i6.293306.

Xu, W., Liu, H.X., Mi, H.G., Zhang, B., Guo, J.-Ch., Ge, Y., & You, J. (2024). High-precision Q modeling and Q migration technology and its applications in loess plateau regions. Applied Geophysics, 21, 835—847. https://doi.org/10.1007/s11770-024-1110-y.

Yegorova, T.P., Starostenko, V.I., Kozlenko, V.G., & Yliniemi, J. (2004). Lithosphere structure of the Ukrainian Shield and Pripyat Trough in the region of EUROBRIDGE-97 (Ukraine and Belarus) from gravity modelling. Tectonophysics, 381(1-4), 29—59. https://doi.org/10.1016/j.tecto.2002.06.003.

Zelt, C.A., & Barton, P.J. (1998). Three-Dimensional Seismic Refraction Tomography: A Comparison of Two Methods Applied to Data from the Faeroe Basin. Journal of Geophysical Research: Solid Earth, 103, 7187—7210. https://doi.org/10.1029/97JB03536.

Zelt, C.A., & Smith, R.B. (1992). Seismic traveltime inversion for 2D crustal velocity structure. Geophysical Journal International, 108(1), 16—34. https://doi.org/10.1111/j.1365-246X.1992.tb00836.x.

Zhang, Y., & Li, W. (2023). High-accuracy migration and demigration techniques for active fault seismic exploration. Applied Geophysics, 20, 198—208. https://doi.org/10.1007/s11770-023-1011-5.

Downloads

Published

2025-12-29

How to Cite

Kolomiyets, K., Verpakhovska, O., Chorna, O., & Lysynchuk, D. (2025). Kinematic and dynamic processing of seismic data along EUROBRIDGE’97 profile. Geofizicheskiy Zhurnal, 47(6). https://doi.org/10.24028/gj.v47i6.339540

Issue

Section

Articles