Combination of improved acquisition system, processing, velocity model and migration for seismic imaging in areas of intense salt tectonics


  • A. N. Tiapkina Closed Joint Stock Company "Concern Nadra", Kyiv, Ukraine, Ukraine
  • Yu. K. Tyapkin Limited Liability Company "Yug-Neftegazgeologiya", Kyiv, Ukraine, Ukraine
  • E. Yu. Tiapkina Weatherford's company, Oslo, Norway,



seismic image, data acquisition system, velocity model, data processing


Various types of hydrocarbon traps associated with intensively developed salt bodies cannot be reliably delineated and then successfully explored by drilling without first obtaining adequate seismic images. This paper shows that such images can only be obtained by a synergic combination of the most advanced options for acquisition system, processing, velocity model and migration as elements of technology as a whole. Currently, such most progressive elements are wide- and full-azimuth acquisition systems, tilted transversely isotropic velocity model, reverse time migration and special processing techniques that enhance the effectiveness of this method. This is substantiated by the actual data examples demonstrated in this paper.


Voytsitskiy Z. Ya., Sidorenko G. D., Parkhomenko T. V., Tiapkina A. N., Khoma R. S., 2007. Application of seismic data migration according to modern trends in the development of the seismic method. Geoinformatika 6(4), 23—30 (in Russian).

Voskresenskiy Yu. N., 2006. Seismic image building (tutorial for students). Moscow: Gubkin University, 116 p. (in Russian).

Kozlov E., Bouska J., Medvedev D., Rodenko A., 1998. There is nothing better 3D seismic than well designed 3D seismic. Geofizika 6(6), 3—15 (in Russian).

Levyant V. B., Ryaboshapko S. M., Belousov A. V., 2009. About full- and wide-azimuth 3D acquisition systems used to analyze anisotropy characteristics of fractured reservoirs. Tekhnologii seysmorazvedki 6(3), 3—10 (in Russian).

Mershchiy V. V., Polunin O. I., Renkas Yu. L., Renkas V. L., 2005. 3D seismic as the main tool for structure delineation in complex seismic and geologic environments. Geoinformatika 4(2), 26—31 (in Ukrainian).

Tiapkina A. N., Tyapkin Yu. K., Okrepkiy A. I., 2014. Аdvanced methods for seismic imaging when mapping hydrocarbon traps associated with salt domes. Geofizicheskiy zhurnal 36(3), 86—104 (in Russian).

Tiapkina A. N., Tyapkin Yu. K., Okrepkiy A. I., 2015. Adequate velocity model as a basis for effective seismic imaging when mapping hydrocarbon traps associated with salt domes. Geofizicheskiy zhurnal (37)1, 147—164 (in Russian).

Tyapkin Yu. K., Shadura A. N., 2010. Review of methods for evaluation of seismic attenuation. Zbirnyk naukovykh prats UkrDGRI 11(3-4), 178—189 (in Russian).

Tyapkin Yu. K., Shadura A. N., Roganov V. Yu., 2011. Time-continuous evaluation of seismic attenuation on the scale of seismic trace. Geofizicheskiy zhurnal 33(3), 40—53 (in Russian).

Abriel W. L., 2015. Pitfalls in structural seismic interpretation due to subsalt multiples. Interpretation 3(1), SB23—SB27.

Aibaidula A., Walraven D., Rodriguez A., 2016. Improving the greater K2 area subsalt imaging with advanced seismic acquisition, model building, and imaging technologies — A Gulf of Mexico case study. The Leading Edge 35(3), 246—252.

Berkhout A. J., 1992. Trends in the seismic industry. J. Seism. Explor. 1(1), 3—8.

Brown A. R., 2011. Interpretation of Three-Dimensional Seismic Data (Seventh edition). AAPG Memoir 42, SEG Investigations in Geophysics No. 9, 646 p.

French W. S., 1974. Two-dimensional and three-dimensional migration of model-experiment reflection profiles. Geophysics 39(3), 265—277.

Houck R. T., House-Finch N. J., Carpenter D. G., Johnson M. L., 1996. Mapping 3-D structure using 2-D seismic. The Leading Edge 15(8), 894—903.

Huang T., Yu B., 2009. Unlocking the potential of WAZ data at the Tonga Discovery with TTI reverse time migration. 79th SEG Annual Meeting, Expanded Abstracts, 532—536.

Jones I. F., 2008. A modeling study of preprocessing considerations for reverse-time migration. Geophysics 73(6), T99—T106.

Kaderali A., Jones M., Howlett J., 2007. White Rose seismic with well data constraints: A case history. The Leading Edge 26(6), 742—754.

Kapoor J., Moldevaneau N., Egan M., O’Brian M., Desta D., Atakishiyev I., Tomida M., Stewart L., 2007. Subsalt imaging — The RAZ/WAZ experience. The Leading Edge 26(11), 1414—1422.

Li Y., Wu Q., Wang M., Huang T., 2014. Benefits of full-azimuth and ultralong-offset data for subsalt imaging in the deepwater Gulf of Mexico. The Leading Edge 33(9), 994—998.

Ma X., Wang B., Reta-Tang C., Whiteside W., Li Z., 2011. Enhanced prestack depth imaging of wide-azimuth data from the Gulf of Mexico: A case history. Geophysics 76(5), WB79—WB86.

Merry A., Miguel K., Hickman P., 2013. Delineating a sub-salt field in the Central North Sea using high density OBC — A case study from the Culzean development. 75th EAGE Conference, Extended Abstracts. Paper Tu 07 13.

Merry A., Sturup-Toft E., 2014. Delineating the Culzean field in the Central North Sea using full azimuth illumination from high density OBC data. EAGE Workshop on Land and Ocean Bottom — Broadband Full Azimuth Seismic Surveys, Extended Abstracts. Paper We 06.

Nestvold E. O., 1992. 3-D seismic: Is the promise fulfilled? The Leading Edge 11(6), 12—19.

Ratcliff D. W., Jacewitz C. A., Gray S. H., 1994. Subsalt imaging via target-oriented 3-D prestack depth migration. The Leading Edge 13(3), 163—170.

Reta-Tang C., Simmons J., Whiteside W., Cai J., Camp R., He Y., 2011. A case study: Improved subsalt imaging through TTI model building and imaging of a WAZ survey in the Gulf of Mexico. 81st SEG Annual Meeting, Expanded Abstracts, 3943-3947.

Rollins F. O., Ariston P.-O., Bowling J., Gou W., Ji S., Li Y., 2013. TTI imaging with multi-wide azimuth data — A case study at Mad Dog, GOM. 83rd SEG Annual Meeting, Expanded Abstracts, 3804—3809.

Ronen S., Fontana P., 2006. Wide- and multi-azimuth acquisition: Issues and answers. World Oil 227(7), 217—224.

Swanston A. M., Mathias M. D., Barker C. A., 2011. Wide-azimuth TTI imaging at Tahiti: Reducing structural uncertainty of a major deepwater subsalt field. Geophysics 76(5), WB67—WB78.

Vigh D., Kapoor J., Moldoveanu N., Li H., 2011. Breakthrough acquisition and technologies for subsalt imaging. Geophysics 76(5), WB41—WB51.

Wang Y., 2006. Inverse-Q filter for seismic resolution enhancement. Geophysics 71(3), V51—V60.

Wang Y., 2008. Inverse-Q filtered migration. Geophysics 73(1), S1—S6.

Weglein A. B., Gasparotto F. A., Carvalho P. M., Stolt R. H., 1997. An inverse-scattering series method for attenuating multiples in seismic reflection data. Geophysics 62(6), 1975—1989.

Whaley J., 2006. The sub-salt imaging challenge. GeoExPro 4, 26—28.

Xu Q., Li Y., Yu X., Huang Y., 2011. Reverse time migration using vector offset output to improve subsalt imaging — A case study at the Walker Ridge GOM. 73rd EAGE Conference, Extended Abstracts. Paper G023.



How to Cite

Tiapkina, A. N., Tyapkin, Y. K., & Tiapkina, E. Y. (2017). Combination of improved acquisition system, processing, velocity model and migration for seismic imaging in areas of intense salt tectonics. Geofizicheskiy Zhurnal, 39(2), 3–21.