Гиперпространства и пространства вероятносных мер на R-деревьях
DOI:
https://doi.org/10.15673/2072-9812.3/2014.40574Schlagworte:
R-дерево, гиперпространство, вероятностная мераAbstract
Доказано, что «срезанные» гиперпространства и пространства вероятносных мер корневых R-деревьев являються также корневыми R-деревьями.
Literaturhinweise
N. Aronszajn and P. Panitchpakdi, Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405--439.
M. Bestvina, R-trees in topology, geometry, and group theory, Handbook of geometric topology, Amsterdam: North-Holland, 2002, pp. 55--91,
A. Ch. Chigogidze, On extension of normal functors, Vestn. MGU. Ser. Matem.-Mekh. 1984. no 6. P. 23--26.
A. George, P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets and System, 64(1994), 395--399.
J. I. den Hartog, E. P. de Vink, Building metric structures with the Meas functor, Duke Math. J. 34 (1967), 255--271; errata 813--814.
O.B. Hubal, M.M. Zarichnyi, Probability measure monad on the category of ultrametric spaces. Appl. Gen. Topol. 9(2008), No. 2, 229--237.
B. Hughes, Trees and ultrametric spaces: a categorical equivalence. Adv. Math. 189 (2004), no 1, 265--282.
L. V. Kantorovich, On the translocation of masses, Dokl. Akad. Nauk SSSR, V. 37(1942), Nos. 7-8, 227--229.
W. A. Kirk, Hyperconvexity of R-trees, Fund. Math. 156 (1)(1998), 67--72.
A. Martini, Introduction to R-trees, Preprint, 2009 (http://www.math.uni-bielefeld.de/~mfluch/docs/r-trees.pdf)
C. Semple, M. Steel, Phylogenetics, Oxford Lecture Series in Mathematics and its Applications, 24, 2003.
J. Tits, A Theorem of Lie-Kolchin for trees, in: Contributions to Algebra: a Collection of Papers Dedicated to Ellis Kolchin, Academic Press, New York, 1977, 377--388.
E. P. de Vink, J. J. M. M. Rutten, Bisimulation for probabilistic transition systems: a coalgebraic approach, Theoretical Computer Science 221, no. 1/2 (1999), 271--293.