Topological classification of genus 1 Morse functions on S^3

Authors

  • Андрей Валерьевич Сергеюк Taras Shevchenko National University of Kyiv, Ukraine

DOI:

https://doi.org/10.15673/2072-9812.4/2014.41443

Keywords:

Morse functions, topological classification, 3-sphere

Abstract

We study the question about a topological classification of Morse functions on the 3-sphere, all critical points of which lie on a different level surfaces. The classification provides with respect to the group Diff0(S3) x Diff0(R) - the group of orientation-preserving diffeomorphisms of the source and the target. We give a description of a corresponding oriented graphs (Kronrod-Reeb graphs). It is shown that these graphs completely classify genus 1 functions. These functions has a property that the genus of all the components of their level surfaces is not greater then 1. Moreover, all these graphs can be realized by a genus 1 functions, thus they can not distinguish a topological type of a more complex functions.

Author Biography

Андрей Валерьевич Сергеюк, Taras Shevchenko National University of Kyiv

Geometry department, PhD

References

V. I. Arnold. The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups. – Russian Mathematical Surveys, 1992. – т. 47. – С. 3-45. – ISSN 0036-0279

V. I. Arnold. Smooth functions statistics. – Functional Analysis and Other Mathematics, 2006. – т. 1. – С. 135-178. – ISSN 1991-0061

V. I. Arnold. Topological classification of Morse functions and generalization of Hilbert's 16th problem. – Mathematical Physics, Analysis and Geometry, 2007. – т. 10. – С. 227-236. – ISSN 1385-0172

V. I. Arnold. Topological classification of Morse polynomials. – Proceedings of the Steklov Institute of Mathematics, 2010. – т. 268. – С. 32-48. – ISSN 0081-5438

В. И. Арнольд. Экспериментальное наблюдение математических фактов. – Москва : МЦНМО, 2006. – 120 c. – ISBN 978-5-94057-282-4

J. Cerf. La stratification naturelle des espaces de fonctions differentiables reelles et le theoreme de la pseudo-isotopie. – Publications Mathématiques de l'IHÉS, 1970. – т. 39. – С. 5-173. – ISSN 0073-8301

M. Hirsch. Differential topology. – New York : Springer-Verlag, 1976. – 209 с. – ISBN 0-387-90148-5

J. W. Milnor. Lectures on the h-cobordism theorem. – Princeton New Jersey : Princeton University Press, 1965. – 121 c. – ISBN 9780691079967

L. I. Nicolaescu. Morse functions statistics. – Functional Analysis and Other Mathematics, 2006. – т. 1. – С. 85-91. – ISSN 1991-0061

L. I. Nicolaescu. Counting Morse functions on the 2-sphere. –Compositio Mathematica, 2008. – т. 144. – С. 1081-1106. – doi:10.1112/S0010437X08003680

A. O. Prishlyak. Equivalence of Morse function on 3-manifolds. – Methods of Functional Analysis and Topology, 1999. – т. 5. – С. 49-53

A. O. Prishlyak. Conjugacy of Morse functions on 4-manifolds. Russian Mathematical Surveys, 2001. – т. 56. – С. 173-174. – doi:10.1070/RM2001v056n01ABEH000370

V. V. Sharko. Smooth and topological equivalence of functions on surfaces. – Ukrainian Mathematical Journal, 2003. – т. 55. – С. 832-846. – ISSN 0041-5995

V. V. Sharko. About a Kronrod-Reeb graph of a function on a manifold. – Methods of Functional Analysis and Topology, 2006. – т. 12. – С. 389-396

V. V. Sharko. Functions on manifolds: algebraic and topological aspects. – Providence : American Mathematical Society, 1993. – 206 c. – ISSN 0065-9282

M. Scharlemann, A. Thompson. Detecting unknotted graphs in 3-space. – Journal of Differential Geometry, 1991. – т. 34. – С. 539-560. – MR1131443

F. Waldhausen. Heegaard-Zerlegungen der 3-Sphare. – Topology, 1968. – т. 7. – С. 195-203. – MR0227992

Published

2015-04-20