Topological classification of genus 1 Morse functions on S^3
DOI:
https://doi.org/10.15673/2072-9812.4/2014.41443Keywords:
Morse functions, topological classification, 3-sphereAbstract
We study the question about a topological classification of Morse functions on the 3-sphere, all critical points of which lie on a different level surfaces. The classification provides with respect to the group Diff0(S3) x Diff0(R) - the group of orientation-preserving diffeomorphisms of the source and the target. We give a description of a corresponding oriented graphs (Kronrod-Reeb graphs). It is shown that these graphs completely classify genus 1 functions. These functions has a property that the genus of all the components of their level surfaces is not greater then 1. Moreover, all these graphs can be realized by a genus 1 functions, thus they can not distinguish a topological type of a more complex functions.References
V. I. Arnold. The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups. – Russian Mathematical Surveys, 1992. – т. 47. – С. 3-45. – ISSN 0036-0279
V. I. Arnold. Smooth functions statistics. – Functional Analysis and Other Mathematics, 2006. – т. 1. – С. 135-178. – ISSN 1991-0061
V. I. Arnold. Topological classification of Morse functions and generalization of Hilbert's 16th problem. – Mathematical Physics, Analysis and Geometry, 2007. – т. 10. – С. 227-236. – ISSN 1385-0172
V. I. Arnold. Topological classification of Morse polynomials. – Proceedings of the Steklov Institute of Mathematics, 2010. – т. 268. – С. 32-48. – ISSN 0081-5438
В. И. Арнольд. Экспериментальное наблюдение математических фактов. – Москва : МЦНМО, 2006. – 120 c. – ISBN 978-5-94057-282-4
J. Cerf. La stratification naturelle des espaces de fonctions differentiables reelles et le theoreme de la pseudo-isotopie. – Publications Mathématiques de l'IHÉS, 1970. – т. 39. – С. 5-173. – ISSN 0073-8301
M. Hirsch. Differential topology. – New York : Springer-Verlag, 1976. – 209 с. – ISBN 0-387-90148-5
J. W. Milnor. Lectures on the h-cobordism theorem. – Princeton New Jersey : Princeton University Press, 1965. – 121 c. – ISBN 9780691079967
L. I. Nicolaescu. Morse functions statistics. – Functional Analysis and Other Mathematics, 2006. – т. 1. – С. 85-91. – ISSN 1991-0061
L. I. Nicolaescu. Counting Morse functions on the 2-sphere. –Compositio Mathematica, 2008. – т. 144. – С. 1081-1106. – doi:10.1112/S0010437X08003680
A. O. Prishlyak. Equivalence of Morse function on 3-manifolds. – Methods of Functional Analysis and Topology, 1999. – т. 5. – С. 49-53
A. O. Prishlyak. Conjugacy of Morse functions on 4-manifolds. Russian Mathematical Surveys, 2001. – т. 56. – С. 173-174. – doi:10.1070/RM2001v056n01ABEH000370
V. V. Sharko. Smooth and topological equivalence of functions on surfaces. – Ukrainian Mathematical Journal, 2003. – т. 55. – С. 832-846. – ISSN 0041-5995
V. V. Sharko. About a Kronrod-Reeb graph of a function on a manifold. – Methods of Functional Analysis and Topology, 2006. – т. 12. – С. 389-396
V. V. Sharko. Functions on manifolds: algebraic and topological aspects. – Providence : American Mathematical Society, 1993. – 206 c. – ISSN 0065-9282
M. Scharlemann, A. Thompson. Detecting unknotted graphs in 3-space. – Journal of Differential Geometry, 1991. – т. 34. – С. 539-560. – MR1131443
F. Waldhausen. Heegaard-Zerlegungen der 3-Sphare. – Topology, 1968. – т. 7. – С. 195-203. – MR0227992