The topological structure deformation functions of three-dimensional manifolds of genus 2

Authors

  • Іванна Миколаївна Іванюк Taras Shevchenko National University of Kyiv, Ukraine
  • Олександр Олегович Пришляк Taras Shevchenko National University of Kyiv,

DOI:

https://doi.org/10.15673/2072-9812.4/2014.41573

Keywords:

The Heegaard diagram, Morse functions, three-dimensional manifold, topological equivalence

Abstract

We consider the deformation of polar Morse-Smale vector fields without closed orbit on closed 3-manifolds. Heegaard diagram are building by the field. We describe diagram transformation corresponded to deformation of field. We conside Heegaard diarams of genus 2, which have four and less points of intersection between meridians. The situation that the vertices have a simple loop are investigated. All possible transformations of diagram was discribing, using the operations of sliding, pulling loops, permutations of the vertices.  Thus we find all nonhomeomorphic diagrams and all possible transformations of it.

Author Biographies

Іванна Миколаївна Іванюк, Taras Shevchenko National University of Kyiv

Department of geometry, postgraduate student

Олександр Олегович Пришляк, Taras Shevchenko National University of Kyiv

Professor  of department of geometry

References

Матвеев С.В. Алгоритмические и компьютерные методы в трехмерной топологии [Текст] / С.В. Матвеев., А.Т. Фоменко. – М.: Издательство Московского университета, 1991, - 301с.

Matveev S.V. Algorithmic Topology and Classification of 3-Manifolds. Second Edition [Text] / S.V. Matveev. – Springer, 2007. – 492p.

Maksimenko S.I. Homotopic types of right stabilizers and orbits of smooth functions on surfaces [Text] / S.I. Maksimenko. –Ukrainian Mathematical Journal, vol. 64, no. 9, 2012. – p.1186-1203.

Пришляк А.О. Векторные поля Морса-Смейла без замкнутых траекторий на трехмерных многообразиях [Текст] / А.О. Пришляк. – Мат. заметки, том 71, вып. 2, 2002. – с.254-260.

Пришляк А.О. Топологическая эквивалентность функций и векторных полей Морса-Смейла на трехмерных многообразиях [Текст] / А.О. Пришляк. – Праці укр. мат. конгресу, 2001. – Київ: 2003. – с.29–38.

Прасолов В.В. Узлы, зацепления и трехмерные многообразия [Текст] / В.В. Прасолов, А.Б. Сосинский. – М:. МЦНМО, 1997, - 352с.

Пришляк О.О. Теорія Морса [Текст] / О.О. Пришляк. – К., 2002. – 65c.

Hass J. Genus Two Heegaard Splittings [Text] / J. Hass. Proc. of the Amer. Math. Society. – 1992. - Vol.114, №2. - p.565-570.

Cattabrica M. Complexity, Heegaard diagrams and generalized dunwoody manifolds [Text] / M. Cattabrica, M. Mulazzani M., A. Vesnin. – Bologna: Univ.of Bologna, 2008. – p.2-15.

Published

2015-04-21