A pseudo-spherical surface in R^4 does not admit two different Bianchi transformations

Authors

  • Василий Алексеевич Горькавый B.I. Verkin Institute for Low Temperature Physics and Engineering, Ukraine
  • Елена Николаевна Невмержицкая V.N. Karazin Kharkiv National University, Ukraine

DOI:

https://doi.org/10.15673/2072-9812.1/2015.50150

Keywords:

pseudo-spherical surface, Bianchi transformation, horocyclic coordinates, conjugate net

Abstract

It is proved that if a pseudo-spherical surface in four-dimensional Euclidean space R4, which does not belong to R3, admits a Bianchi transformation, then this Bianchi transformation is unique.

Author Biographies

Василий Алексеевич Горькавый, B.I. Verkin Institute for Low Temperature Physics and Engineering

Department of differential equations and geometry, Senior research fellow

Елена Николаевна Невмержицкая, V.N. Karazin Kharkiv National University

Geometry chair, senior lecturer

References

Aminov Yu.A., SymA., On Bianchi and Backlund transformations of two-dimensional surfaces in E4 // Math. Phys., An., Geom. – 2000. – V. 3. – P. 75-89.

Aminov Yu.A., Sym A., On Bianchi and Backlund transformations of two dimensional surfaces in four dimensional Euclidean space // Backlund and Darboux transformations. The geometry of solitons. AARMS-CRM Workshop, Halifax, NS, 1999, Canada, June 4-9. – Amer. Math. Soc. – 2001. – P. 91-93.

Aminov Yu.A., Geometry of Submanifolds. – Gordon & Breach Science Publ., Amsterdam. – 2001.

Борисенко А.А., Николаевский Ю.А., Многообразие Грассмана и грассманов образ подмногообразий // Успехи математических наук. – 1991. – Т. 46, № 2. – С. 41-83.

Cieslinski J., Goldstein P., Sym A., Isothermic surfaces in E3 as soliton surfaces // Phys. Lett., A. – 1995. – V. 205, N.1. – P. 37-43.

Gorkavyy V., On pseudo-spherical congruencies in E4 // Математическая физика, анализ, геометрия. – 2003. – Т. 10, В. 4. – С. 498-504.

Горькавый В.А., Конгруэнции Бьянки двумерных поверхностей в Е4 // Матем. сборник. – 2005. - Т. 196, № 10. – С. 79-102.

Gorkavyy V.O, Nevmerzhytska O.M., Ruled surfaces as pseudo-spherical congruencies // Журнал математической физики, анализа, геометрии. – 2009. – Т. 5, В. 3. – С. 359-374.

Горькавый В.А., Невмержицкая Е.Н., Аналог преобразования Бианки для двумерных поверхностей в пространстве S 3 x R1// Ма¬т. за¬ме¬т¬ки. – 2011. – Т. 89, № 6. – С. 833-845.

Gorkavyy V., Nevmerzhitska O., Pseudo-spherical submanifolds with degenerate Bianchi Transformation // Results in Mathematics. – 2011. – V. 60, No. 1. – P. 103-116.

Gorkavyy V., An example of Bianchi transformation in E4 // Журнал мат.ематической физики, анализа, геометрии. – 2012. – Т. 8, В. 3. – С. 240-247.

Горькавый В.А., Обобщение преобразования Бианки-Бэклунда псевдосферических поверхностей // Итоги науки и техники. Современная математика и ее приложения. Тематические обзоры. – 2014. – Т. 126. – С. 191-218.

Tenenblat K., Transformations of manifolds and applications to differential equations. – Pitman Monographs and Surveys in Pure Appl. Math, V. 93, Longman Sci. Techn., Harlow, Essex; Wiley, New York. – 1998.

Tenenblat K., Terng C.-L., Backlund's theorem for n-dimensional submanifolds of R2n-1 // Annals of Mathematics. – 1980. – V. 111. – P. 477-490.

Published

2015-09-14