Correspondences of probability measures with restricted marginals

Szerzők

  • Aleksandr Savchenko Kherson State Agrarian University, Ukraine
  • Mykhailo Zarichnyi Lviv National University,

DOI:

https://doi.org/10.15673/2072-9812.4/2014.41441

Kulcsszavak:

Probability measure, product, bicommutative functor

Absztrakt

We derive the proof of continuity of the correspondence of probability measures with restricted marginals from the property of bicommutativity in the sense of E. Shchepin of probability measure functor.

Szerző életrajzok

Aleksandr Savchenko, Kherson State Agrarian University

Department of Economics, Dean

Mykhailo Zarichnyi, Lviv National University

Department of Mechanics and Mathematics, Dean

Hivatkozások

J. Bergin, On the continuity of correspondences on sets of measures with restricted marginals, Economic Theory, 13(1999), 471--481.

L.Q. Eifler, Some open mapping theorems for marginals, Trans. Amer. Math. Soc., 211 (1975), pp. 311--319.

R. Kozhan, Open-multicommutativity of some functors related to the functor of probability measures, preprint (arXiv:math/0409566).

R. Kozhan, M. Zarichnyi, Open-multicommutativity of the probability measure functor, preprint (arXiv:math/0409590).

K. Kuratowski, Topology, Vol. 1. - Academic Press, New York--London, 1996.

A. Schief, An open mapping theorem for marginals, J. Math. Analysis Appl., Volume 147, Issue 2, 1990, 506--511.

E.V. Shchepin, Functors and uncountable powers of compacta,

Russian Mathematical Surveys, 1981, 36:3, 1--71.

M.M. Zarichnyi, Spaces and maps of idempotent measures, Izvestiya: Mathematics, 2010, 74:3, 481--499.

##submission.downloads##

Megjelent

2015-04-20