The effects of gut indigenous microbiota on intensity of oxidative stress and the cytokine immunity in women with recurrent pyelonephritis.
DOI:
https://doi.org/10.26641/2307-0404.2018.1(part1).127251Keywords:
lactobacilli, intestine, oxidative stress, cytokines, recurrent pyelonephritisAbstract
The aim of our study was to investigate the oxidative stress (OS) intensity and concentration of tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10) depending on the content of Lactobacillus spp. in the colon of patients with recurrent pyelonephritis. Materials and methods. The observational study involved 64 women with recurrent pyelonephritis, aged 39.5±3.2 years. According to the quantitative content of Lactobacillus spp. in the patients’ intestine, the women were divided into two groups: the first group of the patients (n=38) had a deficit of Lactobacillus spp. in the intestine, and the second one (n=26) didn’t have any disorders. The intensity of OS was estimated by determining the OS index (OSI) as the ratio of total changes in the activity of oxidative processes to the total antioxidant capacity of blood. The blood concentration of TNF-α and interleukin 10 was determined. The local inflammation was characterized by the determination of the content of C-reactive protein (CRP), malondialdehyde (MDA) and the activity of N-acetyl-β-D-hexosaminidase (HEX) and β-galactosidase (β-gal) in urine. Results. The blood levels of OSI, MDA and TNF-α in the women with the deficit of Lactobacillus spp. in the gut were significantly higher compared with the deficit-free patients (р=0.03, р=0.01and р=0.007, respectively). Moreover, in the patients with the deficit of intestine lactobacillus spp., we observed high levels of CRP (р=0.045), HEX and β-gal (р=0.045) in the urine. In addition, a significant regression was found between IL-10 inthe blood and HEX in the urine (p=0.003), as well as MDA and TNF-α in the blood (p=0.02). Conclusions. Thus, the results of our work confirm the experimental studies data which demonstrate the leading role of gut indigenous microbiota in the development of the OS and inflammatory process.
References
KolesnykMO, editor. [Fundamentals of Nephrology]. Kyiv. 2013;380. Ukrainian.
Lee BT, Ahmed FA, Lee Hamm L, et al. Association of C-reactive protein, tumor necrosis factor-alpha, and interleukin-6 with chronic kidney disease. BMC Nephrology. 2015;16:77. doi: 10.1186/s12882-015-0068-7
Circu ML, Aw TY. Intestinal redox biology and oxidative stress. Semin Cell Dev Biol. 2012;23:729-37. doi: 10.1016/j.semcdb.2012.03.014
Kamada N, Chen GY, Inohara N, Núñez G. Control of Pathogens and Pathobionts by the Gut Microbiota. Nat Immunol. 2013;14(7):685-90. doi: 10.1038/ni.2608
Gaĭseniuk FZ, Driianskaia VE, Drannik GN. Proinflammatory cytokines in patients with pyelonephritis. Lik Sprava. 2013;6:32-7.
Grabe M, Bishop MC, Bjerklund-Johansen TE, et al. Guidelines on Urological Infections. European Association of Urology; 2015. Available from: https://uroweb.org/wp-content/uploads/19-Urological-infections_LR2.pdf
Heymann F, Trautwein C, Tacke F. Monocytes and macrophages as cellular targets in liver fibrosis. Inflamm Allergy Drug Targets. 2009;8(4):307-18. doi: 10.2174/18715280978935223
Korol LV, Migal LYa, StepanovaNM. Intensity of oxidative stress and activity of angionetsin converting enzyme in blood of patients with uncomplicated pyelonephritis. Ukr. Biochem. J. 2017;89(2):99-105. doi: https://doi.org/10.15407/ubj89.02.099
Mardinoglu A, Shoaie S, Bergentall M, et al. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Molecular Systems Biology. 2015;11(10). doi: 10.15252/msb.20156487
Mikkelsen KH, Frost M, Bahl MI. Effect of Antibiotics on Gut Microbiota, Gut Hormones and Glucose Metabolism. PLoS ONE. 2015;10(11). doi: 10.1371/journal.pone.0142352
Núria Macha, Dolors Fuster-Botellaa Endurance exercise and gut microbiota: A review. J. Sport and Health Science. 2016;6(2):179-192. https://https://doi.org/10.1016/j.jshs.2016.05.001" target="_blank">doi.org/10.1016/j.jshs.2016.05.001
Xu J, Xu C, Chen X, et al. Regulation of an antioxidant blend on intestinal redox status and major microbiota in early weaned piglets. Nutrition. 2014;30:584-9. doi: 10.1016/j.nut.2013.10.018
Jandhyala SM, Talukdar R, Subramanyam C, et al. Role of the normal gut microbiota World Journal of Gastroenterology: WJG. 2015;21(29):8787-803. doi: 10.3748/wjg.v21.i29.8787
Panda S, Elkhader I, Casellas F, et al. Short-term effect of antibiotics on human gut microbiota. PLoS One. 2014;9(4). doi: 10.1371/journal.pone.0095476
Puchades Montesa MJ, González Rico MA, et al. Solís Salguero MA. Study of oxidative stress in advanced kidney disease. Nefrología. 2009;29(5):464-73. doi: 10.5414/CN107639 PMID: 23782545
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2018 Medicni perspektivi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Submitting manuscript to the journal "Medicni perspektivi" the author(s) agree with transferring copyright from the author(s) to publisher (including photos, figures, tables, etc.) editor, reproducing materials of the manuscript in the journal, Internet, translation into other languages, export and import of the issue with the author’s article, spreading without limitation of their period of validity both on the territory of Ukraine and other countries. This and other mutual duties of the author and all co-authors separately and editorial board are secured by written agreement by special form to use the article, the sample of which is presented on the site.
Author signs a written agreement and sends it to Editorial Board simultaneously with submission of the manuscript.