Plasma amino acids spectrum as an important part of metabolomic pattern in patients with coronary artery disease and atrial fibrillation

Authors

DOI:

https://doi.org/10.26641/2307-0404.2023.4.293976

Keywords:

coronary artery disease, atrial fibrillation, gut microbiota metabolites, plasma amino acids

Abstract

The aim of our work was to estimate the plasma amino acid (AA) spectrum peculiarities in coronary artery disease (CAD) patients with atrial fibrillation (AF) and to check their connections with cardiometabolic risk factors and gu, microbiota metabolites. 300 patients were divided into three groups: first – 149 patients with CAD but without arrhythmias, second – 123 patients with CAD and AF paroxysm and control group – 28 patients without CAD and arrhythmias. Plasma AA level was detected by ion exchange liquid column chro­matography method. The plasma AA spectrum changes in CAD patients with AF paroxysm were investigated: some plasma AA (glutamate, glutamine, glycine, alanine, valine, tyrosine) and their combinations (Isoleucine+Leucine/Valine, Glycine+Serine, Glycine/Methionine, Phenylalanine/Tyrosine, Glutamine/Glutamate) had significant changes in second group patients and had correlations with cardiometabolic risk factors (glycine, valine, arginine, glutamate, isoleucine, alanine, methionine (p<0.05)). Plasma AA combinations were revealed, the lattert could be used as an early marker of AF paroxysm in CAD patients by the results of ROC analysis: 2.44 * Isoleucine – Glycine; area under ROC-curve 0.8122 and 3.16 * Phenylalanine – Glycine, area under ROC-curve 0.8061. Plasma AA spectrum evaluation could be a new promising metabolic marker for AF paroxysm in CAD patients. Altered AA levels point to the depth of pathogenetic changes during AF paroxysm formation: disorders of AA metabolism with branched chain (isoleucine, leucine, valine), aromatic AA (phenylalanine, tyrosine), glutamine/glutamate, glycine/serine and glyci­ne/methionine metabolism. A strong reliable connection between plasma AA spectrum and gut microbiota metabolites (trimethylamine, trimethylamine-N-oxide, total amount of fecal short chain fatty acids) was detected.

References

Chen MX, Wang SY, Kuo CH, Tsai IL. Metabo-lome analysis for investigating host-gut microbiota inter-actions. J Formos Med Assoc. 2019;118(1):S10-S22. doi: https://doi.org/10.1016/j.jfma.2018.09.007

Duttaroy AK. Role of Gut Microbiota and Their Metabolites on Atherosclerosis, Hypertension and Human Blood Platelet Function: A Review. Nutrients. 2021;13(1):144. doi: https://doi.org/10.3390/nu13010144

Breit S, Kupferberg A, Rogler G, Hasler G. Vagus Nerve as Modulator of the Brain–Gut Axis in Psychiatric and Inflammatory Disorders. Front Psychiatry. 2018;9:44. doi: https://doi.org/10.3389/fpsyt.2018.00044

Lizogub VG, Kramarova VN, Melnychuk IO. The role of gut microbiota changes in the pathogenesis of heart disease. Zaporizkiy medical journal. 2019;21(5-116):672-8. doi: https://doi.org/10.14739/2310-1210.2019.5.179462

Wang Z, Zhao Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell. 2018;9(5):416-31.

doi: https://doi.org/10.1007/s13238-018-0549-0

Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2021;70(6):1174-82. doi: https://doi.org/10.1136/gutjnl-2020-323071

Zhang X, Gérard P. Diet-gut microbiota interac-tions on cardiovascular disease. Comput Struct Biotechnol J. 2022;20:1528-40. doi: https://doi.org/10.1016/j.csbj.2022.03.028

Kornej J, Hanger VA, Trinquart L, et al. New bio-markers from multiomics approaches: improving risk prediction of atrial fibrillation. Cardiovasc Res. 2021;117(7):1632-44. doi: https://doi.org/10.1093/cvr/cvab073

She J, Guo M, Li H, Liu J, Liang X, Liu P, et al. Targeting amino acids metabolic profile to identify novel metabolic characteristics in atrial fibrillation. Clin Sci (Lond). 2018;132(19):2135-46. doi: https://doi.org/10.1042/CS20180247

Harskamp RE, Granger TM, Clare RM, White KR, Lopes RD, Pieper KS, et all. Peripheral blood metabolite profiles associated with new onset atrial fibrillation. Am Heart J. 2019;211:54-9. doi: https://doi.org/10.1016/j.ahj.2019.01.010

Liu W, Zhang L, Shi X, Shen G, Feng J. Cross-comparative metabolomics reveal sex-age specific meta-bolic fingerprints and metabolic interactions in acute myo¬cardial infarction. Free Radic Biol Med. 2022;183:25-34. doi: https://doi.org/10.1016/j.freeradbiomed.2022.03.008

Cai D, Hou B, Xie SL. Amino acid analysis as a method of discovering biomarkers for diagnosis of diabetes and its complications. Amino Acids. 2023 May;55(5):563-78. doi: https://doi.org/10.1007/s00726-023-03255-8

Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomstrom-Lundqvist C, et al. 2020 ESC Guide-lines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). European Heart Journal. 2020;42:373498. doi: https://doi.org/10.1093/eurheartj/ehaa612

Knuuti J, Wijns W, Saraste A, Capodanno D, Bar-bato E, Funck-Brentano C, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. European Heart Journal. 2020;41:407477. doi: https://doi.org/10.1093/eurheartj/ehz425

Gałęzowska G, Ratajczyk J, Wolska L. Determi-nation of amino acids in human biological fluids by high-performance liquid chromatography: critical review. Amino Acids. 2021;53(7):993-1009. doi: https://doi.org/10.1007/s00726-021-03002-x

Nafis F, Alvi Y. Biostatistics Manual for Health Research. Elsevier; 2023 April 19. ISBN: 9780443185502.

Nahm FS. Receiver operating characteristic curve: overview and practical use for clinicians. Korean J Anesthe¬siol. 2022;75(1):25-36. doi: https://doi.org/10.4097/kja.21209

Xiong Y, Jiang L, Li T. Aberrant branched-chain amino acid catabolism in cardiovascular diseases. Front Cardiovasc Med. 2022;9:965899. doi: https://doi.org/10.3389/fcvm.2022.965899

Melnychuk IO, Sharaeva ML, Kramarova VN, Lyzogub VH. Prospects for the sulfur-containing amino acids medicines usage for trimethylamine-N-oxide biosyn¬the¬sis modulation in humans. Pathology. 2022;19(3-56):247-55. doi: https://doi.org/10.14739/2310-1237.2022.3.263564

Azab SM, Shanmuganathan M, Souza RJ, Kroe-zen Z, Desai D, Williams NC, et al. Early sex-dependent differences in metabolic profiles of overweight and adiposity in young children: a cross-sectional analysis. BMC Med. 2023;21:176. doi: https://doi.org/10.1186/s12916-023-02886-8

Razquin C, Ruiz-Canela M, Toledo E, Clish CB, Guasch-Ferré M, García-Gavilán JF, et al. Circulating Amino Acids and Risk of Peripheral Artery Disease in the PREDIMED Trial. Int J Mol Sci. 2023;24(1):270. doi: https://doi.org/10.3390/ijms24010270

Zhang Y, He X, Qian Y, Xu S, Mo C, Yan Z, et al. Plasma branched-chain and aromatic amino acids correlate with the gut microbiota and severity of Parkinson’s disease. NPJ Parkinsons Dis. 2022;8:48. doi: https://doi.org/10.1038/s41531-022-00312-z

McGarrah RW, White PJ. Branched-chain amino acids in cardiovascular disease. Nat Rev Cardiol. 2023 Feb;20(2):77-89. doi: https://doi.org/10.1038/s41569-022-00760-3

Xu Y, Jiang H, Li L, Chen F, Liu Y, Zhou M, et al. Branched-Chain Amino Acid Catabolism Promotes Thro-mbosis Risk by Enhancing Tropomodulin-3 Propiony-lation in Platelets. Circulation. 2020 Jul 7;142(1):49-64. doi:https://doi.org/10.1161/CIRCULATIONAHA.119.043581

Jian H, Miao S, Liu Y, Wang X, Xu Q, Zhou W, et al. Dietary Valine Ameliorated Gut Health and Accelerated the Development of Nonalcoholic Fatty Liver Disease of Laying Hens. Oxid Med Cell Longev. 2021 Aug 23;2021:4704771. doi: https://doi.org/10.1155/2021/4704771

Liu Y, Hou Y, Wang G, Zheng X, Hao H. Gut Microbial Metabolites of Aromatic Amino Acids as Signals in Host-Microbe Interplay. Trends Endocrinol Metab. 2020 Nov;31(11):818-34. doi: https://doi.org/10.1016/j.tem.2020.02.012

Perna S, Alalwan TA, Alaali Z, Alnashaba T, Gasparri C, Infantino V, et al. The Role of Glutamine in the Complex Interaction between Gut Microbiota and Health: A Narrative Review. Int J Mol Sci. 2019 Oct 22;20(20):5232. doi: https://doi.org/10.3390/ijms20205232

Starreveld R, Ramos KS, Muskens AJ, Brun-del BJ, de Groot NM. Daily Supplementation of L-Glutamine in Atrial Fibrillation Patients: The Effect on Heat Shock Proteins and Metabolites. Cells. 2020 Jul 20;9(7):1729. doi: https://doi.org/10.3390/cells9071729

Alves A, Bassot A, Bulteau AL, Pirola L, Morio B. Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases. Nutrients. 2019;11(6):1356. doi: https://doi.org/10.3390/nu11061356

Downloads

Published

2023-12-22

How to Cite

1.
Melnychuk I, Lyzogub V. Plasma amino acids spectrum as an important part of metabolomic pattern in patients with coronary artery disease and atrial fibrillation. Med. perspekt. [Internet]. 2023Dec.22 [cited 2024Dec.19];28(4):13-22. Available from: https://journals.uran.ua/index.php/2307-0404/article/view/293976

Issue

Section

THEORETICAL MEDICINE