Methods for studying the state of bone metabolism in patients with diabetes who require comprehensive total rehabilitation of the oral cavity through dental implantation

Authors

DOI:

https://doi.org/10.26641/2307-0404.2025.2.333358

Keywords:

periodontitis, periodontal pathology, diabetes mellitus, bone metabolism markers, dental implantation, bone metabolism, surgical dentistry, maxillofacial surgery

Abstract

Replacement of dentition defects using the dental implantation method is today one of the most common operations in the practice of a dentist-surgeon. The purpose of the study is to substantiate the choice of diagnostic methods for patients with type 2 diabetes mellitus, complicated by generalized periodontitis and diabetic osteopathy, who require dental implantation for total replacement of dentition defects. An electronic search was performed in PubMed and Google Scholar in the time interval 2003-2023. The study found 3728, selected 1170 and analyzed 24 sources, according to which the most optimal and expediently recommended research methods for the above group of patients were established. When processing information, the inclusion criteria were the study design, which included books and documents, clinical studies, meta-analysis, randomized controlled trial, review, systematic review, etc. The exclusion criteria were publications that did not meet the purpose of this review. The keywords used were “periodontitis”, “periodontal pathology”, “diabetes mel­litus”, “bone metabolism markers”, “dental implantation”, “bone metabolism”, “surgical dentistry”, “maxillofacial surgery”. In patients without general somatic pathology, the results of implant treatment are quite predictable, however, the treatment of patients with type 2 diabetes mellitus may be compromised by a large number of complications, especially if they have generalized periodontitis and diabetic osteopathy. There is no consensus in the literature among researchers regarding the nature of the combined effect of the above pathology and various variants of generalized periodontitis on the features of bone metabolism and the results of dental implantation, especially in those patients who require total rehabilitation, which in turn requires a more detailed study of their effect on the osseointegration of implants. This is of particular importance for the development of new approaches to preoperative diagnostics of personalized determination of indications and contraindications for dental implantation in this category of patients. In contrast to X-ray studies, cone-beam computed tomography and dual-energy X-ray absorptiometry have a more sensitive response to changes in the rate of balance between the processes of bone resorption and osteosynthesis, which makes their clinical use valuable for monitoring in the preoperative period and predicting osseointegration after dental implantation, as well as for assessing the response to the prescribed treatment. Diagnostics and planning of surgical interventions in patients with type 2 diabetes mellitus cannot be similar to those used in somatically healthy patients.

References

American Diabetes Association Professional Practice Committee 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes-2024. Diabetes care. 2024;47(Suppl 1):S20-S42. doi: https://doi.org/10.2337/dc24-S002

Khachatryan H, Hakobyan G. Diagnostic and prognostic value of indicators of markers of bone metabolism in type 2 diabetes mellitus patients with UV functionalised dental implants. Journal of stomatology, oral and maxillofacial surgery. 2023;124(6S):101608. doi: https://doi.org/10.1016/j.jormas.2023.101608

Marchand F, Raskin A, Dionnes-Hornes A, Barry T, Dubois N, Valéro R, et al. Dental implants and diabetes: conditions for success. Diabetes & metabolism. 2012;38(1):14-9. doi: https://doi.org/10.1016/j.diabet.2011.10.002

Peled M, Ardekian L, Tagger-Green N, Gutma-cher Z, Machtei EE. Dental implants in patients with type 2 diabetes mellitus: a clinical study. Implant dentistry. 2003;12(2):116-22. doi: https://doi.org/10.1097/01.id.0000058307.79029.b1

Fuster-Torres MÁ, Peñarrocha-Diago M, Peñarrocha-Oltra D, Peñarrocha-Diago M. Relationships bet-ween bone density values from cone beam computed tomography, maximum insertion torque, and resonance frequency analysis at implant placement: a pilot study. The International journal of oral & maxillofacial implants. 2011;26(5):1051-6.

Park CS, Kang SR, Kim JE, Huh KH, Lee SS, Heo MS, et al. Validation of bone mineral density measu-rement using quantitative CBCT image based on deep learning. Scientific reports. 2023;13(1):11921. doi: https://doi.org/10.1038/s41598-023-38943-8

Al-Jamal MFJ, Al-Jumaily HA. Can the Bone Density Estimated by CBCT Predict the Primary Stability of Dental Implants? A New Measurement Protocol. The Journal of craniofacial surgery. 2021;32(2):e171-e174. doi: https://doi.org/10.1097/SCS.0000000000006991

Isoda K, Ayukawa Y, Tsukiyama Y, Sogo M, Matsushita Y, Koyano K. Relationship between the bone density estimated by cone-beam computed tomography and the primary stability of dental implants. Clinical oral implants research. 2012;23(7):832-6. doi: https://doi.org/10.1111/j.1600-0501.2011.02203.x

Massera D, Biggs ML, Walker MD, Mukamal KJ, Ix JH, Djousse L, et al. Biochemical Markers of Bone Tur¬nover and Risk of Incident Diabetes in Older Women: The Cardiovascular Health Study. Diabetes care. 2018;41(9):1901-8. doi: https://doi.org/10.2337/dc18-0849

Zoch ML, Clemens TL, Riddle RC. New insights into the biology of osteocalcin. Bone. 2016;82:42-9. doi: https://doi.org/10.1016/j.bone.2015.05.046

Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy meta¬bolism by the skeleton. Cell. 2007;130(3):456-69. doi: https://doi.org/10.1016/j.cell.2007.05.047

Motyl KJ, McCabe LR, Schwartz AV. Bone and glucose metabolism: a two-way street. Archives of bio-chemistry and biophysics. 2010;503(1):2-10. doi: https://doi.org/10.1016/j.abb.2010.07.030

Vimalraj S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene. 2020;754:144855. doi: https://doi.org/10.1016/j.gene.2020.144855

Zhang Z, Nam HK, Crouch S, Hatch NE. Tissue Nonspecific Alkaline Phosphatase Function in Bone and Muscle Progenitor Cells: Control of Mitochondrial Respiration and ATP Production. International journal of molecular sciences. 2021;22(3):1140. doi: https://doi.org/10.3390/ijms22031140

Chen H, Li J, Wang Q. Associations between bone-alkaline phosphatase and bone mineral density in adults with and without diabetes. Medicine. 2018;97(17):e0432. doi: https://doi.org/10.1097/MD.0000000000010432

Al-Hariri M. Sweet Bones: The Pathogenesis of Bone Alteration in Diabetes. Journal of diabetes research. 2016;2016:6969040. doi: https://doi.org/10.1155/2016/6969040

Bergman A, Qureshi AR, Haarhaus M, Lind-holm B, Barany P, Heimburger O, et al. Total and bone-specific alkaline phosphatase are associated with bone mineral density over time in end-stage renal disease pa-tients starting dialysis. Journal of nephrology. 2017;30(2):255-62. doi: https://doi.org/10.1007/s40620-016-0292-7

Lumachi F, Camozzi V, Tombolan V, Luisetto G. Bone mineral density, osteocalcin, and bone-specific alkaline phosphatase in patients with insulin-dependent diabetes mellitus. Annals of the New York Academy of Sciences. 2009;1173(Suppl 1):E64-E67. doi: https://doi.org/10.1111/j.1749-6632.2009.04955.x

Kuzniak NB, Boitsaniuk SI, Sukhovolets IO. [The use of biochemical markers of bone metabolism in dentistry]. Klinichna stomatolohiia. 2015;1:99-104. Ukrainian.

Williams C, Sapra A. Osteoporosis Markers. In: Statpearls Knowledge Base. StatPearls Publishing; 2023.

König D, Oesser S, Scharla S, Zdzieblik D, Gol-lhofer A. Specific Collagen Peptides Improve Bone Mineral Density and Bone Markers in Postmenopausal Women-A Randomized Controlled Study. Nutrients. 2018;10(1):97. doi: https://doi.org/10.3390/nu10010097

Roy M, Majid H, Khan P, Sharma N, Kohli S, Islam SU., et al. CTX-1 and TRACP-5b as biomarkers for osteoporosis risk in type 2 diabetes mellitus: a cross-sectional study. Journal of diabetes and metabolic disorders. 2024;23(2):2055-64. doi: https://doi.org/10.1007/s40200-024-01464-w

Chen X, Kang S, Bao Z. Effects of Glimepiride Combined with Recombinant Human Insulin Injection on Serum IGF-1, VEGF and TRACP-5b Oxidative Stress Levels in Patients with Type 2 Diabetes Mellitus. Evidence-based complementary and alternative medicine: eCAM. 2022;2022:4718087. doi: https://doi.org/10.1155/2022/4718087

Hygum K, Starup-Linde J, Harsløf T, Vestergaard P, Langdahl BL. Mechanisms in endocrinology: Diabetes mellitus, a state of low bone turnover – a systematic review and meta-analysis. European journal of endocrinology. 2017;176(3):R137-R157. doi: https://doi.org/10.1530/EJE-16-0652

Klein KR, Walker CP, McFerren AL, Huffman H, Frohlich F, Buse JB. Carbohydrate Intake Prior to Oral Glucose Tolerance Testing. Journal of the Endocrine Society. 2021;5(5):bvab049. doi: https://doi.org/10.1210/jendso/bvab049

Aghaloo T, Pi-Anfruns J, Moshaverinia A, Sim D, Grogan T, Hadaya D. The Effects of Systemic Diseases and Medications on Implant Osseointegration: A Syste-matic Review. The International journal of oral & maxillofacial implants. 2019;34:s35-s49. doi: https://doi.org/10.11607/jomi.19suppl.g3

D'Ambrosio F, Amato A, Chiacchio A, Sisalli L, Giordano F. Do Systemic Diseases and Medications Influence Dental Implant Osseointegration and Dental Implant Health? An Umbrella Review. Dentistry journal. 2023;11(6):146. doi: https://doi.org/10.3390/dj11060146

Gudaryan OO, Mashchenko IS, Kucherenko TO. [Treatment of aggressive (rapidly progressing) generalized periodontitis using systemic enzyme therapy in combination with osteoinductive medicines]. Medychni perspektyvy. 2020;25(3):144-52. Ukrainian. doi: https://doi.org/10.26641/2307-0404.2020.3.214852

Al-Asali M, Alqutaibi AY, Al-Sarem M, Saeed F. Deep learning-based approach for 3D bone segmentation and prediction of missing tooth region for dental implant planning. Scientific reports. 2024;14(1):13888. doi: https://doi.org/10.1038/s41598-024-64609-0

Zhang C, Fan L, Zhang S, Zhao J, Gu Y. Deep learning based dental implant failure prediction from periapical and panoramic films. Quantitative imaging in medicine and surgery. 2023;13(2):935-45. doi: https://doi.org/10.21037/qims-22-457

Melerowitz L, Sreenivasa S, Nachbar M, Stsefa-nenka A, Beck M, Senger C, et al. Design and evaluation of a deep learning-based automatic segmentation of maxillary and mandibular substructures using a 3D U-Net. Clinical and translational radiation oncology. 2024;47:100780. doi: https://doi.org/10.1016/j.ctro.2024.100780

Gudarian AA, Kucherenko TA. The state of bone metabolism in patients with different variants of the course of generalized periodontitis. Visnik problem biologii i meditsini. 2020;3(157):314-18. doi: https://doi.org/10.29254/2077-4214-2020-3-157-314-318

Liu M, Kurimoto P, Zhang J, Niu QT, Stolina M, Dechow PC, et al. Sclerostin and DKK1 Inhibition Pre-serves and Augments Alveolar Bone Volume and Architecture in Rats with Alveolar Bone Loss. Journal of dental research. 2018;97(9):1031-8. doi: https://doi.org/10.1177/0022034518766874

Couto BADA, Fernandes JCH, Saavedra-Silva M, Roca H, Castilho RM, Fernandes GVO. Antisclerostin Ef-fect on Osseointegration and Bone Remodeling. J Clin Med. 2023 Feb 6;12(4):1294. doi: https://doi.org/10.3390/jcm12041294

Ominsky MS, Li C, Li X, Tan HL, Lee E, Bar-rero M, et al. Inhibition of sclerostin by monoclonal anti-body enhances bone healing and improves bone density and strength of nonfractured bones. J Bone Miner Res. 2011 May;26(5):1012-21. doi: https://doi.org/10.1002/jbmr.307

Taut AD, Jin Q, Chung JH, Galindo-Moreno P, Yi ES, Sugai JV, et al. Sclerostin antibody stimulates bone regeneration after experimental periodontitis. J Bone Miner Res. 2013 Nov;28(11):2347-56. doi: https://doi.org/10.1002/jbmr.1984

Virk MS, Alaee F, Tang H, Ominsky MS, Ke HZ, Lieberman JR. Systemic administration of sclerostin anti-body enhances bone repair in a critical-sized femoral defect in a rat model. J Bone Joint Surg Am. 2013 Apr 17;95(8):694-701. doi: https://doi.org/10.2106/JBJS.L.00285

Asokan AG, Jaganathan J, Philip R, Soman RR, Sebastian ST, Pullishery F. Evaluation of bone mineral density among type 2 diabetes mellitus patients in South Karnataka. J Nat Sci Biol Med. 2017 Jan-Jun;8(1):94-8. doi: https://doi.org/10.4103/0976-9668.198363

Kang KY, Hong YS, Park SH, Ju JH. Increased serum alkaline phosphatase levels correlate with high disease activity and low bone mineral density in patients with axial spondyloarthritis. Semin Arthritis Rheum. 2015 Oct;45(2):202-7. doi: https://doi.org/10.1016/j.semarthrit.2015.03.002

Kubihal S, Gupta Y, Goyal A, Kalaivani M, Tan-don N. Bone microarchitecture, bone mineral density and bone turnover in association with glycemia and insulin action in women with prior gestational diabetes. Clin Endocrinol (Oxf). 2022 Apr;96(4):531-8. doi: https://doi.org/10.1111/cen.14641

Akalın A, Yorulmaz G, Alataş İÖ, Onbaşı K, Efe FB. Bone turnover markers and bone mineral density in patients with type 2 diabetes. The European Research Journal. 2023;9(2):301-8. doi: https://doi.org/10.18621/eurj.1085838

Published

2025-06-27

How to Cite

1.
Gudarian O, Cherednyk D. Methods for studying the state of bone metabolism in patients with diabetes who require comprehensive total rehabilitation of the oral cavity through dental implantation. Med. perspekt. [Internet]. 2025Jun.27 [cited 2025Dec.5];30(2):20-7. Available from: https://journals.uran.ua/index.php/2307-0404/article/view/333358

Issue

Section

THEORETICAL MEDICINE