Study of the neuroprotective properties of metformin in rats with type 2 diabetes mellitus and brain injury induced by intracerebral hemorrhage

Авторы

DOI:

https://doi.org/10.26641/2307-0404.2024.2.307690

Ключевые слова:

type 2 diabetes mellitus, intracerebral haemorrhage, metformin, neuroprotection, oxidative stress

Аннотация

The aim of this study was to study the effect of metformin (Met) on the formation of the conditional passive avoidance skills, markers of neurogenesis and oxidative stress in the brain of rats with acute intracerebral hemorrhage (ICH) in the setting of streptozotocin-nicotinamide-induced diabetes. Type 2 diabetes mellitus (T2DM) was induced in rats via the intraperitoneal injection of streptozotocin (STZ) and nicotinamide (NA), ICH – by microinjection of bacterial collagenase into the striatum. Rats were randomly divided into four groups: 1 – intact animals (n=8), 2 – T2DM (n=9); 3 – T2DM+ICH (n=7); 4 – T2DM+ICH+Met (n=7). The passive avoidance test was used to evaluate behavioural activity. Advanced oxidation protein products (AOPP) and lactate were measured by spectrophotometry, advanced glycation end products (AGEs) by quantitative fluorescence, level of 8-hydroxy-2-deoxyguanosine (8-OHdG) was assessed by enzyme-linked immunosorbent assay (ELISA). Histopathological examination was performed using general histological staining techniques and immunohistochemical methods for assessment of expression of endothelial NO-synthase (eNOS), Growth Associated Protein 43 (GAP43), Hypoxia-inducible factor 1-alpha (HIF-1α), neural cadherine (N-cadherine) and vascular endothelial cadherine (VE-cadherine). In this study, metformin had nootropic (anti-amnestic) activity and decreased oxidative stress markers (AGEs, AOPPs and 8-OHdG) levels by 29.1% (p<0.001), 24.9% (p<0.015) and 29.3% (p<0.05) respectively, which indicates its positive impact on the course of free radical oxidation reactions intensified by both diabetes and intracerebral hemorrhage. The study provides additional information on neuroprotective properties of metformin and the emphasizes possibility of using metformin in diabetic patients at risk of hemorrhagic stroke. Considering the increase in VE-cadherin expression by the drug, it is possible to predict its positive effect on the function of blood-brain barrier. This study may serve as a reference for the feasibility of studying the clinical efficacy of metformin under these conditions.

Библиографические ссылки

Mosenzon O, et al. Diabetes and stroke: what are the connections? J Stroke. 2023;25(1):26 38. doi: https://doi.org/10.5853/jos.2022.02306

Lattanzi S, Di Napoli M, Ricci S, Divani AA. Matrix Metalloproteinases in Acute Intracerebral Hemorrhage. Neurotherapeutics. 2020;17(2):484-96. doi: https://doi.org/10.1007/s13311-020-00839-0

Gong L, Gu Y, Yu Q, Wang H, Zhu X, Dong Q, et al. Prognostic Factors for Cognitive Recovery Beyond Early Poststroke Cognitive Impairment (PSCI): A Prospective Cohort Study of Spontaneous Intracerebral Hemorrhage. Front Neurol. 2020;11:278. doi: https://doi.org/10.3389/fneur.2020.00278

Bahadar GA, Shah ZA. Intracerebral Hemorrhage and Diabetes Mellitus: Blood-Brain Barrier Disruption, Pathophysiology and Cognitive Impairments. CNS Neurol Disord Drug Targets. 2021;20(4):312-26. doi: https://doi.org/10.2174/1871527320666210223145112

Ahmad E, Lim S, Lamptey R, Webb DR, Davies MJ. Type 2 diabetes. Lancet. 2022;400(10365):1803-20. doi: https://doi.org/10.1016/S0140-6736(22)01655-5

Pashkovska NV, Pashkovskyi VM. [Diabetes and stroke: a modern view of the problem]. Mizhnarodnyi endokrynolohichnyi zhurnal. 2018;14(4):298-309. Uk-rainian. doi: https://doi.org/10.22141/2224-0721.14.4.2018.140181

Huang Y, Gu C, Zhang W, Wang J, Xu J, Liu J, et al. Early Cognitive Impairment at Acute Stage After Intracerebral Hemorrhage. Curr Neurovasc Res. 2022;19(5):505-14. doi: https://doi.org/10.2174/1567202620666221107102321

Bahader GA, Nash KM, Almarghalani DA, Alhadidi Q, McInerney MF, Shah ZA. Type-I diabetes aggra-vates post-hemorrhagic stroke cognitive impairment by augmenting oxidative stress and neuroinflammation in mice. Neurochem Int. 2021;149:105151. doi: https://doi.org/10.1016/j.neuint.2021.105151

Wander GS, Hukkeri MYK, Yalagudri S, Ma-hajan B, Panda AT. Rosuvastatin: Role in Secondary Prevention of Cardiovascular Disease. J Assoc Physicians India. 2018;66(3):70-4. PMID: 30341873

Pikula A, Howard BV, Seshadri S. Stroke and Diabetes. In: Cowie CC, Casagrande SS, Menke A, et al., eds. Diabetes in America. 3rd ed. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases (US); Aug 2018. PMID: 33651535.

Triggle CR, Marei I, Ye K, et al. Repurposing Met-formin for Vascular Disease. Curr Med Chem. 2023;30(35):3955-78. doi: https://doi.org/10.2174/0929867329666220729154615

Nafisa A, et al. Endothelial function and dysfunction: Impact of metformin. Pharmacol Ther. 2018;192:150-62. doi: https://doi.org/10.1016/j.pharmthera.2018.07.007

Li N, Zhou T, Fei E. Actions of Metformin in the Brain: A New Perspective of Metformin Treatments in Related Neurological Disorders. Int J Mol Sci. 2022;23:8281. doi: https://doi.org/10.3390/ijms23158281

Moreira PI. Metformin in the diabetic brain: friend or foe? Ann Transl Med. 2014;2(6):54. doi: https://doi.org/10.3978/j.issn.2305-5839.2014.06.10

Cao G, Gong T, Du Y, Wang Y, Ge T, Liu J. Mechanism of metformin regulation in central nervous system: progression and future perspectives. Biomed Pharmacother. 2022;156:113686. doi: https://doi.org/10.1016/J.BIOPHA.2022.113686

Sanati M, Aminyavari S, Afshari AR, Sahebkar A. Mechanistic insight into the role of metformin in Alzheimer’s disease. Life Sci. 2022;291:120299. doi: https://doi.org/10.1016/j.lfs.2021.120299

Paudel YN, Angelopoulou E, Piperi C, Shaikh MF, Othman I. Emerging neuroprotective effect of metformin in Parkinson’s disease: A molecular crosstalk. Pharmacol Res. 2020;152:104593. doi: https://doi.org/10.1016/j.phrs.2019.104593

Arnoux I, Willam M, Griesche N, Krummeich J, Watari H, Offermann N, et al. Metformin reverses early cortical network dysfunction and behavior changes in Huntington’s disease. Elife 2018;7:e38744. doi: https://doi.org/10.7554/eLife.38744

Correll CU, Sikich L, Reeves G, Johnson J, Keeton C, Spanos M, et al. Metformin add-on vs. antipsychotic switch vs. continued antipsychotic treatment plus healthy lifestyle education in overweight or obese youth with severe mental illness: Results from the IMPACT trial. World Psychiatry 2020;19:69-80. doi: https://doi.org/10.1002/wps.20714

Battini V, Cirnigliaro G, Leuzzi R, Rissotto E, Mosini G, Benatti B, et al. The potential effect of met-formin on cognitive and other symptom dimensions in patients with schizophrenia and antipsychotic-induced weight gain: a systematic review, meta-analysis, and meta-regression. Front Psychiatry. 2023;14:1215807. doi: https://doi.org/10.3389/fpsyt.2023.1215807

Alnaaim SA, Al-Kuraishy HM, Al-Gareeb AI, Ali NH, Alexiou A, Papadakis M, et al. New insights on the potential anti-epileptic effect of metformin: Mecha-nistic pathway. J Cell Mol Med. 2023;27(24):3953-65. doi: https://doi.org/10.1111/jcmm.17965

Amer ME, Othamn AI, El-Missiry MA. Melatonin ameliorates diabetes-induced brain injury in rats. Acta histochemica. 2021;123(2):151677. doi: https://doi.org/10.1016/j.acthis.2020.151677

Tao L, Li D, Liu H, Jiang F, Xu Y, Cao Y, et al. Neuroprotective effects of metformin on traumatic brain injury in rats associated with NF-κB and MAPK signaling pathway. Brain Research Bulletin. 2018;140:154-61. doi: https://doi.org/10.1016/j.brainresbull.2018.04.008

Karimipour M, Shojaei‐Zarghani S, Milani MM, Soraya H. Pre-Treatment with Metformin in Comparison with Post-Treatment Reduces Cerebral Ischemia Reper-fusion Induced Injuries in Rats. Bulletin of emergency and trauma. 2018;6(2):115-21. doi: https://doi.org/10.29252/beat-060205

Li A, Sun X, Ni Y, Chen X, Guo A. HIF-1α Involves in Neuronal Apoptosis after Traumatic Brain Injury in Adult Rats. Journal of Molecular Neuroscience. 2013;51(3):1052-62. doi: https://doi.org/10.1007/s12031-013-0084-7

Hulsebosch CE, DeWitt DS, Jenkins LW, Prough DS. Traumatic brain injury in rats results in increased expression of Gap-43 that correlates with behavioral recovery. Neuroscience Letters. 1998;255(2):83-6. doi: https://doi.org/10.1016/s0304-3940(98)00712-5

Béziaud T, Ru Chen X, El Shafey N, Fréchou M, Teng F, Palmier B, et al. Simvastatin in traumatic brain injury: Effect on brain edema mechanisms. Critical Care Medicine. 2011;39(10):2300-7. doi: https://doi.org/10.1097/CCM.0b013e3182227e4a

Cobbs CS, Fenoy A, Bredt DS, Noble LJ. Expression of nitric oxide synthase in the cerebral microvas-culature after traumatic brain injury in the rat. Brain Research. 1997;751(2):336-8. doi: https://doi.org/10.1016/s0006-8993(96)01429-1

Potârniche AV, et al. Experimental model of Streptozotocin-Nicotinamide induced Diabetes Mellitus type II in Sprague-Dawley rats: Step by step protocol and the encountered issues. Rev Rom Med Vet. 2018;28(2):22-6.

Ghasemi A, Khalifi S, Jedi S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiol Hung. 2014;101(4):408-20. doi: https://doi.org/10.1556/APhysiol.101.2014.4.2

Zhyliuk V, Lievykh A, Shevtsova A, Mamchur V, Tkachenko V, Kharchenko Y, et al. The impact of met-formin and rosuvastatin on the markers of oxidative stress, glycemic control, and lipid profile in rats with streptozotocin-nicotinamide-induced diabetes after acute intracerebral hemorrhage. Problems of Endocrine Pathology. 2021;78(4):87-93. doi: https://doi.org/10.21856/j-PEP.2021.4.12

Chen J, Xu ZC, Xu X-M, Zhang JH. Animal Mo-dels of Acute Neurological Injury. 2nd ed. Springer International Publishing; 2019. 544 p. doi: https://doi.org/10.1007/978-3-030-16082-1

Wu C, Yang L, Li Y, et al. Effects of Exercise Training on Anxious-Depressive-like Behavior in Al-zheimer Rat. Med Sci Sports Exerc. 2020;52(7):1456-69. doi: https://doi.org/10.1249/MSS.0000000000002294

Whishaw IQ, Kolb B, ed. The Behavior of the Laboratory Rat: A Handbook with Tests. 1st Ed. New York: Oxford University Press; 2004. 520 p.

Münch G, Keis R, Weßels A, Riederer P, Bahner U, Heidland A, et al. Determination of Advanced Glycation End Products in Serum by Fluorescence Spectroscopy and Competitive ELISA. Eur J Clin Chem Clin Biochem. 1997;35(9):669-77. doi: https://doi.org/10.1515/cclm.1997.35.9.669

Witko-Sarsat V, Friedlander M, Capeillère-Blan-din C, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49(5):1304-13. doi: https://doi.org/10.1038/ki.1996.186

Taylor EL, Armstrong KR, Perrett D, Hattersley AT, Winyard PG. Optimisation of an Advanced Oxidation Protein Products Assay: Its Application to Studies of Oxidative Stress in Diabetes Mellitus. Oxid Med Cell Longev. 2015:2015:496271. doi: https://doi.org/10.1155/2015/496271

Rhodes A. Fixation of tissues. In: Suvarna SK, Layton C, Bancroft JD, еditors. Bancroft's Theory and Practice of Histological Techniques. Seventh Ed. Churchill Livingstone; 2013. р. 69-93.

Bancroft JD, Layton C. The hematoxylins and eosin. In: Suvarna SK, Layton C, Bancroft JD, еditors. Bancroft's Theory and Practice of Histological Techniques. Seventh Ed. Churchill Livingstone; 2013. p. 173-186.

Highley JR, Sullivan N. Neuropathology and muscle biopsy techniques. In: Suvarna SK, Layton C, Bancroft JD, еditors. Bancroft's Theory and Practice of Histo-logical Techniques. Seventh Ed. Churchill Livingstone; 2013. p. 311-313.

Jackson P, Blythe D, Immunohistochemical techniques. In: Suvarna SK, Layton C, Bancroft JD, еditors. Bancroft's Theory and Practice of Histological Techniques. Seventh Ed. Churchill Livingstone; 2013. p. 381-426.

Peacock JL, Peacock PJ. Oxford Handbook of Medical Statistics. 2nd Ed. Oxford University Press; 2020. 641 p.

Chen CC, Shen JW, Chung NC, Min MY, Cheng SJ, Liu IY. Retrieval of context-associated memory is dependent on the Ca(v)3.2 T-type calcium channel. PLoS One. 2012;7(1):e29384. doi: https://doi.org/10.1371/journal.pone.0029384

Liu J, Gao B-B, Clermont AC, et al. Hyperglycemia-induced cerebral hematoma expansion is mediated by plasma kallikrein. NatMed. 2011;17(2):206-10. doi: https://doi.org/10.1038/nm.2295

Ehtewish H, Arredouani A, El-Agnaf O. Diag-nostic, Prognostic, and Mechanistic Biomarkers of Diabetes Mellitus-Associated Cognitive Decline. Int J Mol Sci. 2022;23(11):6144. doi: https://doi.org/10.3390/ijms23116144

Song EC, Chu K, Jeong SW, et al. Hyperglycemia exacerbates brain edema and perihematomal cell death after intracerebral hemorrhage. Stroke. 2003;34(9):2215-20. doi: https://doi.org/10.1161/01.STR.0000088060.83709.2C

Zheng J, Shi L, Liang F, et al. Sirt 3 ameliorates oxidative stress and mitochondrial dysfunction after intracerebral hemorrhage in diabetic rats. Front Neurosci. 2018;12:414. doi: https://doi.org/10.3389/fnins.2018.00414

Chiu CD, Chen CC, Shen CC, et al. Hyperglycemia exacerbates intracerebral hemorrhage via the downregulation of aquaporin-4: temporal assessment with magnetic resonance imaging. Stroke. 2013;44(6):1682-9. doi: https://doi.org/10.1161/STROKEAHA.113.675983

Lievykh АE, Tkachenko VA, Kharchenko YV, Shevtsova AI, Ushakova GA, Zhyliuk VI. Changes in biomarkers of endothelial function in the blood after intracerebral hemorrhage in rats with type 2 diabetes mellitus. Regulatory Mechanisms in Biosystems. 2021;12(4):733-9. doi: https://doi.org/10.15421/0221101

Lievykh A, Zhyliuk V, Tkachenko V, Kharchenko Y, Ushakova G, Shevtsova A. Effects of edaravone on oxidative protein modification and activity of gelatinases after intracerebral hemorrhage in rats with nicotinamide-streptozotocin induced diabetes. Journal of Biological Research – Bollettino Della Società Italiana Di Biologia Sperimentale. 2022;95:10554. doi: https://doi.org/10.4081/jbr.2022.10554

Mishiro K, Imai T, Sugitani S, et al. Diabetes mellitus aggravates hemorrhagic transformation after ischemic stroke via mitochondrial defects leading to endothelial apoptosis. PLoS One. 2014;9(8):103818. doi: https://doi.org/10.1371/journal.pone.0103818

Sena CM, Matafome P, Louro T, Nunes E, Fernandes R, Seiça RM. Metformin restores endothelial function in aorta of diabetic rats. Br J Pharmacol. 2011;163(2):424-37.

doi: https://doi.org/10.1111/j.1476-5381.2011.01230.x

Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, et al. Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Des Devel Ther. 2023;17:1907-32. doi: https://doi.org/10.2147/DDDT.S409373

Zhyliuk V, Lievykh A, Shevtsova A, Tkachenko V, Kharchenko Y. The impact of perindopril and metformin on the markers of endothelial dysfunction in rats with acute intracerebral hemorrhage and type 2 diabetes mellitus. Medicni Perspektivi. 2021;26(4):15-22. doi: https://doi.org/10.26641/2307-0404.2021.4.248055

Alnaaim SA, Al-Kuraishy HM, Al-Gareeb AI, Ali NH, Alexiou A, Papadakis M, et al. New insights on the potential antiepileptic effect of metformin: Mecha-nistic pathway. J Cell Mol Med. 2023;27(24):3953-65. doi: https://doi.org/10.1111/jcmm.17965

Загрузки

Опубликован

2024-06-28

Как цитировать

1.
Holubiev V, Oberemok M, Tkachenko V, Kharchenko Y, Bondarenko O, Lievykh A, Zhyliuk V. Study of the neuroprotective properties of metformin in rats with type 2 diabetes mellitus and brain injury induced by intracerebral hemorrhage. Med. perspekt. [Интернет]. 28 июнь 2024 г. [цитируется по 17 июль 2024 г.];29(2):174-86. доступно на: https://journals.uran.ua/index.php/2307-0404/article/view/307690

Выпуск

Раздел

CLINICAL MEDICINE