Physiological regulation of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha in mitochondrial metabolism during physical exercises: a systematic review

Автор(и)

DOI:

https://doi.org/10.26641/2307-0404.2025.2.333361

Ключові слова:

peroxisome proliferator-activated receptor gamma coactivator 1-alpha, physical exercises, mitochondrial, biogenesis

Анотація

This study aims to analyze in depth the mechanism of physical exercises in increasing the expression of PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha) as the most important part of mitochondrial biogenesis through a systematic review. Literature databases including PubMed, Web of Science, and Science Direct were searched for this systematic review study. The inclusion criteria for this study were articles published in the last five years. The articles discussed PGC-1α, exercises, and mitochondrial biogenesis. PubMed, Web of Science, and Science Direct databases were used to find 141 published articles. Finally, 13 articles that met the inclusion criteria were selected and analyzed for this systematic review. In this study, standard operating procedures were evaluated using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Exercises have been shown to increase PGC-1α expression, according to this systematic review. Increased biogenesis in mitochondria may be triggered by increased PGC-1α expression, which helps in the energy production process. On the other hand, it is not yet clear about the ideal intensity and type of physical activity to increase PGC-1α. This provides recommendations for further exploration in future experimental studies.

Посилання

Lancet T. Diabetes: a defining disease of the 21st century. Lancet. 2023;401(10394):2087. doi: https://doi.org/10.1016/S0140-6736(23)01296-5

Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes pre-valence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. doi: https://doi.org/10.1016/j.diabres.2021.109119

Ong KL, Stafford LK, McLaughlin SA, et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203-34. doi: https://doi.org/10.1016/S0140-6736(23)01301-6

Khoramipour K, Hekmatikar AA, Sotvan H. An overview of Fatmax and MFO in exercise. Razi J Med Sci. 2020;27(3):49-59.

Orumiyehei A, Khoramipour K, Rezaei MH, et al. High-Intensity Interval Training-Induced Hippocampal Molecular Changes Associated with Improvement in Anxiety-like Behavior but Not Cognitive Function in Rats with Type 2 Diabetes. Brain Sci. 2022;12(10):1280. doi: https://doi.org/10.3390/brainsci12101280

Ebrahimnezhad N, Nayebifar S, Soltani Z, Khoramipour K. High-intensity interval training reduced oxidative stress and apoptosis in the hippocampus of male rats with type 2 diabetes: The role of the PGC1α-Keap1-Nrf2 signaling pathway. Iran J Basic Med Sci. 2023;26(18):1313-9. doi: https://doi.org/10.22038/IJBMS.2023.70833.15387

Laura J. McMeekin, Stephanie N. Fox SMB and RMC. Dysregulation of PGC-1α-Dependent Transcrip-tional Programs in Neurological and Developmental Disorders: Therapeutic Challenges and Opportunities. Cells. 2021 Feb 9;10(2):352.

doi: https://doi.org/ 10.3390/cells10020352

Piccinin E, Villani G, Moschetta A. Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: the role of PGC1 coactivators. Nat Rev Gastroenterol Hepatol. 2019;16(3):160-74. doi: https://doi.org/10.1038/s41575-018-0089-3

Dikalov SI, Dikalova AE. Crosstalk between Mitochondrial Hyperacetylation and Oxidative Stress in Vascular Dysfunction and Hypertension. Antioxidants Redox Signal. 2019;31(10):710-21. doi https://doi.org/10.1089/ars.2018.7632

Wu L, Zhou M, Li T, et al. GLP-1 regulates exer-cise endurance and skeletal muscle remodeling via GLP-1R/AMPK pathway. Biochim Biophys Acta – Mol Cell Res. 2022;1869(9):119300. doi: https://doi.org/10.1016/j.bbamcr.2022.119300

Zhu N, Yan X, Li H. Clinical significance of serum pgc-1 alpha levels in diabetes mellitus with myocardial infarction patients and reduced ros-oxidative stress in diabetes mellitus with myocardial infarction model. Diabetes, Metab Syndr Obes. 2020;13:4041-9. doi: https://doi.org/10.2147/DMSO.S276163

Andrade C. Physical Exercise and Health, 4: the health care professional and patient's guide to under-standing what to do, how, and why-part 2. J Clin Psychiatry. 2023;84(6):23f15187. doi: https://doi.org/10.4088/jcp.23f15187

Marzuca-Nassr GN, Alegría-Molina A, SanMar-tín-Calísto Y, et al. Muscle mass and strength gains following resistance exercise training in older adults 65-75 years and older adults above 85 years. Int J Sport Nutr Exerc Metab. 2024;34(1):11-9. doi: https://doi.org/10.1123/ijsnem.2023-0087

Pinckard K, Baskin KK, Stanford KI. Effects of Exercise to Improve Cardiovascular Health. Front Cardiovasc Med. 2019;6(6):1-12. doi: https://doi.org/10.3389/fcvm.2019.00069

Liu C, Wu X, Vulugundam G, Gokulnath P, Li G, Xiao J. Exercise promotes tissue regeneration: mecha-nisms involved and therapeutic scope. Sport Med – Open. 2023;9(1):27. doi https://doi.org/10.1186/s40798-023-00573-9

Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol – Regul Integr Comp Physiol. 2011;300(6):1303-10. doi: https://doi.org/10.1152/ajpregu.00538.2010

Fernandes MSDS, Aidar FJ, da Silva Pedroza AA, et al. Effects of aerobic exercise training in oxidative metabolism and mitochondrial biogenesis markers on prefrontal cortex in obese mice. BMC Sports Sci Med Rehabil. 2022;14(1):1-8. doi https://doi.org/10.1186/s13102-022-00607-x

Hejazi K, Attarzadeh Hosseini SR, Fathi M, Mosaferi Ziaaldini M. The Regulation of the Concentrations of Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-Alpha and Sirtuin 1 Protein in the Soleus Muscle by Aerobic Exercise Training in Obese Wistar Rats. J Kermanshah Univ Med Sci. 2020;24(3):22-7. doi: https://doi.org/10.5812/jkums.101849

Gahramani M, Karbalaeifar S. Effect of eight weeks high intensity interval training on NRF-1, 2 and Tfam gene expressione levels in ST muscles in rats with myocardial infarction. Med J Tabriz Univ Med Sci Heal Serv. 2019;41(6):75-82. doi: https://doi.org/10.34172/mj.2020.009

Shirvani H, Rahmati-Ahmadabad S, Broom DR, Mirnejad R. Eccentric resistance training and β-hydroxy-β-methylbutyrate free acid affects muscle PGC-1α ex-pression and serum irisin, nesfatin-1 and resistin in rats. J Exp Biol. 2019;222(10):jeb198424. doi: https://doi.org/10.1242/jeb.198424

Hoseini Z, Behpour N, Hoseini R. Aerobic training with moderate or high doses of vitamin D improve liver enzymes, LXRα and PGC-1α levels in rats with T2DM. Sci Rep. 2024;14(1):1-11. doi: https://doi.org/10.1038/s41598-024-57023-z

Guo Y, Zhou F, Fan J, et al. Swimming alleviates myocardial fibrosis of type II diabetic rats through acti-vating miR-34a-mediated SIRT1/PGC-1α/FNDC5 signal pathway. PLoS One. 2024;19(9):1-24. doi: https://doi.org/10.1371/journal.pone.0310136

Ghadery B, Ghazalian F, Hosseini SA, Abed Na-tanzy H, Shamsoddini A. The effect of six weeks of high intensity interval training on enos and pgc-1α gene expres¬sion in the heart tissue of male obese rats. Jundishapur J Heal Sci. 2020;12(2):1-5. doi: https://doi.org/10.5812/jjhs.100280

Shoghi E, Safari T, Parsi-Moud A, Mirzaei I, Rad NS, Chahkandi M. Effects of moderate intensity training and lithium on spatial learning and memory in a rat model: The role of SIRT3 and PGC1-α expression levels and brain-derived neurotropic factor. Exp Gerontol. 2024;191(Apr):112442. doi: https://doi.org/10.1016/j.exger.2024.112442

Sylviana N, Natalia C, Goenawan H, et al. Effect of short-term endurance exercise on Cox IV and PGC-1a mRNA expression levels in rat skeletal muscle. Biomed Pharmacol J. 2019;12(3):1309-16. doi: https://doi.org/10.13005/bpj/1759

Cho E, Jeong DY, Kim JG, Lee S. The acute effects of swimming exercise on PGC-1α-FNDC5/irisin-UCP1 expression in male C57bL/6J mice. Metabolites. 2021;11(2):1-11. doi: https://doi.org/10.3390/metabo11020111

Chou TJ, Lin LY, Lu CW, Hsu YJ, Huang CC, Huang KC. Effects of aerobic, resistance, and high-intensity interval training on thermogenic gene expression in white adipose tissue in high fat diet induced obese mice. Obes Res Clin Pract. 2024;18(1):64-72. doi: https://doi.org/10.1016/j.orcp.2024.01.003

Luo J, Tang C, Chen X, et al. Impacts of aerobic exercise on depression-like behaviors in chronic un-predictable mild stress mice and related factors in the AMPK/PGC-1α pathway. Int J Environ Res Public Health. 2020;17(6):2042. doi: https://doi.org/10.3390/ijerph17062042

Shelbayeh OA, Arroum T, Morris S, Busch KB. PGC-1 α is a master regulator of mitochondrial lifecycle and ROS stress response. Antioxidants. 2023;12(5):1075. doi: https://doi.org/10.3390/antiox12051075

Bost F, Kaminski L. The metabolic modulator PGC-1α in cancer. Am J Cancer Res. 2019;9(2):198-211. PMID: 30906622; PMCID: PMC6405967.

Wang F, Wang X, Liu Y, Zhang Z. Effects of Exercise-Induced ROS on the Pathophysiological Func-tions of Skeletal Muscle. Oxid Med Cell Longev. 2021 Oct 1;2021:3846122. doi: https://doi.org/10.1155/2021/3846122

Powers SK, Deminice R, Ozdemir M, Yoshihara T, Bomkamp MP, Hyatt H. Exercise-induced oxidative stress: Friend or foe? J Sport Heal Sci. 2020;9(5):415-25. doi: https://doi.org/10.1016/j.jshs.2020.04.001

Wibawa JC, Arifin MZ, Herawati L. Ascorbic acid drink after submaximal physical activity can maintain the superoxide dismutase levels in east java student regiment. Indian J Forensic Med Toxicol. 2021;15(3):3383-92. doi: https://doi.org/10.37506/ijfmt.v15i3.15824

Agostini F, Bisaglia M, Plotegher N. Linking ROS Levels to Autophagy: The Key Role of AMPK. Anti-oxidants. 2023;12(7):1-14. doi: https://doi.org/10.3390/antiox12071406

Arhen BB, Renwick JRM, Zedic AK, et al. AMPK and PGC-α following maximal and supramaximal exercise in men and women: a randomized cross-over study. Appl Physiol Nutr Metab. 2024;49(4):526-38. doi: https://doi.org/10.1139/apnm-2023-0256

Parsamanesh N, Asghari A, Sardari S, et al. Res-veratrol and endothelial function: A literature review. Pharmacol Res. 2021;170(Jun):105725. doi: https://doi.org/10.1016/j.phrs.2021.105725

Zhang Q, Lei YH, Zhou JP, et al. Role of PGC-1α in mitochondrial quality control in neurodegenerative diseases. Neurochem Res. 2019;44(9):2031-43. doi: https://doi.org/10.1007/s11064-019-02858-6

Steinberg GR, Carling D. AMP-activated protein kinase: the current landscape for drug development. Nat Rev Drug Discov. 2019;18(7):527-51. doi: https://doi.org/10.1038/s41573-019-0019-2

Mozaffaritabar S, Koltai E, Zhou L, et al. PGC-1α activation boosts exercise-dependent cellular response in the skeletal muscle. J Physiol Biochem. 2024;80(2):329-35. doi: https://doi.org/10.1007/s13105-024-01006-1

Radak Z, Suzuki K, Posa A, Petrovszky Z, Koltai E, Boldogh I. The systemic role of SIRT1 in exercise mediated adaptation. Redox Biol. 2020;35(Feb):101467. doi: https://doi.org/10.1016/j.redox.2020.101467

Xu R, Luo X, Ye X, et al. SIRT1/PGC-1α/PPAR-γ correlate with hypoxia-induced chemoresistance in non-small cell lung cancer. Front Oncol. 2021;11(Jul):1-15. doi: https://doi.org/10.3389/fonc.2021.682762

Maissan P, Mooij EJ, Barberis M. Sirtuins-mediated system-level regulation of mammalian tissues at the interface between metabolism and cell cycle: A systematic review. Biology (Basel). 2021;10(3):1-78. doi: https://doi.org/10.3390/biology10030194

Juan CG, Matchett KB, Davison GW. A systematic review and meta-analysis of the SIRT1 response to exercise. Sci Rep. 2023;13(1):1-14. doi: https://doi.org/10.1038/s41598-023-38843-x

Zhou L, Pinho R, Gu Y, Radak Z. The role of SIRT3 in exercise and aging. cells. 2022;11(16):2596. doi: https://doi.org/10.3390/cells11162596

Xu L, Li Y, Zhou L, et al. SIRT3 elicited an anti-warburg effect through HIF1α/PDK1/PDHA1 to inhibit cholangiocarcinoma tumorigenesis. Cancer Med. 2019;8(5):2380-91. doi: https://doi.org/10.1002/cam4.2089

Gao S, Yao W, Zhou R, Pei Z. Exercise training affects calcium ion transport by downregulating the CACNA2D1 protein to reduce hypertension-induced myocardial injury in mice. iScience. 2024;27(4):109351. doi: https://doi.org/10.1016/j.isci.2024.109351

Flück M, Sanchez C, Jacquemond V, et al. Enhanced capacity for CaMKII signaling mitigates calcium release related contractile fatigue with high intensity exercise. Biochim Biophys Acta – Mol Cell Res. 2024;1871(2):119610. doi: https://doi.org/10.1016/j.bbamcr.2023.119610

Bouviere J, Fortunato RS, Dupuy C, Werneck-Decastro JP, Carvalho DP, Louzada RA. Exercise-stimulated ros sensitive signaling pathways in skeletal muscle. Antioxidants. 2021;10(4):1-21. doi: https://doi.org/10.3390/antiox10040537

Folgueira C, Herrera-Melle L, López JA, et al. Remodeling p38 signaling in muscle controls locomotor activity via IL-15. Sci Adv. 2024;10(33):1-18. doi: https://doi.org/10.1126/sciadv.adn5993

You W, Knoops K, Berendschot TTJM, et al. PGC-1a mediated mitochondrial biogenesis promotes recovery and survival of neuronal cells from cellular degeneration. Cell Death Discov. 2024;10(1):1-15. doi: https://doi.org/10.1038/s41420-024-01953-0

##submission.downloads##

Опубліковано

2025-06-27

Як цитувати

1.
Ayubi N, Wibawa J, Rizki A, Afandi A, Callixte C. Physiological regulation of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha in mitochondrial metabolism during physical exercises: a systematic review. Med. perspekt. [інтернет]. 27, Червень 2025 [цит. за 05, Грудень 2025];30(2):27-3. доступний у: https://journals.uran.ua/index.php/2307-0404/article/view/333361

Номер

Розділ

ТЕОРЕТИЧНА МЕДИЦИНА