Transforming growth factor beta-1 in patients with hypertension who had COVID-19

Автор(и)

DOI:

https://doi.org/10.26641/2307-0404.2025.2.333373

Ключові слова:

post-COVID syndrome, arterial hypertension, transforming growth factor β1

Анотація

Post-covid syndrome is a multisystem disease. The totality of disorders of organs and systems, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causes significant damage to human health for a long time, especially if the patient has comorbid pathology. Taking into account the concern about the impact of COVID-19 on the cardiovascular system, several mechanisms of the direct impact of SARS-CoV-2 on the specified system are considered. It should be noted that there is a limited number of studies on the observation of patients with post-covid syndrome. Today, the priority direction is the study of predictors of the adverse course of cardiovascular diseases, especially after COVID-19. Transforming growth factor β1 can be considered one of the potential markers of cardiovascular complications. The aim of our study was to evaluate the level of transforming growth factor β1 in patients with hypertension who had COVID-19. The cross-sectional study included 27 patients with hypertension after COVID-19. 16 patients with controlled hypertension (blood pressure 140/90 mm Hg) formed the first group. The second group was formed by 11 patients with uncontrolled hypertension (blood pressure ≥140/90 mm Hg). We determined the increased level of transforming growth factor β1 and its relationship with the glucose (r=0.38, p=0.049). The level of blood pressure control was associated with increasing age of patients, lower glomerular filtration rate (p<0.01), and worse glucose control (p<0.05). Thus, the data indicate that transforming growth factor β1 may be a possible factor inducing the development of cardiometabolic disorders in patients with hypertension after COVID-19.

Посилання

Bielecka E, Sielatycki P, Pietraszko P, et al. Ele-vated arterial blood pressure as a delayed complication following COVID-19 – A narrative review. Int J Mol Sci. 2024;25(3):1837. doi: https://doi.org/10.3390/ijms25031837

National Institute for Health and Care Research. NIHR themed review: living with COVID-19 [Internet]. 2020 [cited 2024 Dec 23]. Available from: https://evidence.nihr.ac.uk/themedreview/living-with-covid19/

World Health Organization. A clinical case definition of post COVID-19 condition by a Delphi consensus [Internet]. 2021 [cited 2024 Dec 23]. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1

World Health Organization. Post COVID-19 Condition (Long COVID) [Internet]. 2022 [cited 2024 Dec 23]. Available from: https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition

Kuriata O, Mytrokhina O, Kushnir Yu, et al. [Post-COVID syndrome: status of carbohydrate metabolism in patients with hypertension and stable ischemic heart disease]. Mizhnar endokrynol zhurn [Internet]. 2024;20(1):31-8. Ukrainian. doi: https://doi.org/10.22141/2224-0721.20.1.2024.1354

Cinar A, Gedikli O, Uyanik M, Terzi O. Eva-luation of Coronary Artery Calcium Score (CACS) in Dipper and Non-Dipper Hypertensive Patients with Moderate and High Cardiovascular Disease Risks. Medicina. 2024;60(12):1999. doi: https://doi.org/10.3390/medicina60121999

Gemelli Against COVID-19 Post-Acute Care Study Group. Post-COVID-19 global health strategies: the need for an interdisciplinary approach. Aging Clin Exp Res. 2020;32:1613-20. doi: https://doi.org/10.1007/s40520-020-01616-x

Strilchuk L. [Post- COVID syndrome: a new mul-tidisciplinary challenge]. Zdorovia Ukrainy. 2021;498(5):3. Ukrainian.

Quinn KL, Lam GY, Walsh JF, et al. Cardiovascular Considerations in the Management of People With Suspected Long COVID. Can J Cardiol. 2023;39(6):741-53. doi: https://doi.org/10.1016/j.cjca.2023.04.003

Kusumawardhani NY, Putra IC, Kamarullah W, et al. Cardiovascular disease in post-acute COVID-19 syndrome: a comprehensive review of pathophysiology and diagnosis approach. Rev Cardiovasc Med. 2023;24(1):28. doi: https://doi.org/10.31083/j.rcm2401028

Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27:601-15. doi: https://doi.org/10.1038/s41591-021-01283-z

Wan Y, Shang J, Graham R, Baric RS, Lia F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020;94(7):e00127-20. doi: https://doi.org/10.1128/jvi.00127-20

Tan W, Aboulhosn J. The cardiovascular burden of coronavirus disease 2019 (COVID-19) with a focus on congenital heart disease. Int J Cardiol [Internet]. 2020;309:70-7. doi: https://doi.org/10.1016/j.ijcard.2020.03.063

Ren LL, Li XJ, Duan TT, et al. Transforming growth factor-β signaling: From tissue fibrosis to therapeutic opportunities. Chem Biol Interact. 2023;369:110289. doi: https://doi.org/10.1016/j.cbi.2022.110289

Liu J, Tao Zhuang, Jingjiang Pi, et al. Endothelial forkhead box transcription factor P1 regulates pathological ca¬rdiac remodeling through transforming growth factor-β1–en¬dothelin-1 signal pathway. Circulation. 2019;140(8):665-80. doi: https://doi.org/10.1161/CIRCULATIONAHA.119.039767

Braga YL, do Carmo Neto JR, Franco PI, et al. The Influence of IL-11 on Cardiac Fibrosis in Experi¬men-tal Models: A Systematic Review. J Cardiovasc Dev Dis. 2024;11(2):65. doi: https://doi.org/10.3390/jcdd11020065

Randell A, Daneshtalab N. Elastin microfibril interface–located protein 1, transforming growth factor beta, and implications on cardiovascular complications. J Am Soc Hypertens. 2017;11(7):437-48. doi: https://doi.org/10.1016/j.jash.2017.04.010

Li B, Khanna A, Sharma V, et al. TGF-β1 DNA Polymorphisms, Protein Levels, and Blood Pressure. Hypertension. 1999;33(1):271-5. doi: https://doi.org/10.1161/01.HYP.33.1.271

Matsuki K, Hathaway CK, Lawrence MG, et al. The Role of Transforming Growth Factor β1 in the Regulation of Blood Pressure. Curr Hypertens Rev. 2014;10(4):223-38. doi: https://doi.org/10.2174/157340211004150319123313

Derhaschnig U, Shehata M, Herkner H, et al. Increased levels of transforming growth factor-β1 in essential hypertension. Am J Hypertens. 2002;15(3):207-11. doi: https://doi.org/10.1016/S0895-7061(01)02327-5

Zeng KF, Wang HJ, Deng B, et al. Ethyl ferulate suppresses post-myocardial infarction myocardial fibrosis by inhibiting transforming growth factor receptor 1. Phytomedicine. 2023;121:155118. doi: https://doi.org/10.1016/j.phymed.2023.155118

Carod-Artal F. Post-COVID-19 syndrome: epidemiology, diagnostic criteria and pathogenic mechanisms involved. Rev Neurol. 2021;72(11):384-96. doi: https://doi.org/10.33588/rn.7211.2021230

McEvoy JW, McCarthy CP, Bruno RM, et al. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension: Developed by the task force on the management of elevated blood pressure and hypertension of the European Society of Cardiology (ESC) and endorsed by the European Society of Endocrinology (ESE) and the European Stroke Organisation (ESO). Eur Heart J. 2024;45(38):3912-4018. doi: https://doi.org/10.1093/eurheartj/ehae178.

Dubrov SO, Kovalenko VM, Vakaliuk IP, et al. [State Expert Center of the Ministry of Health of Ukraine. Clinical guideline based on evidence «Arterial hyper-tension» [Internet]. 2024 [cited 2024 Nov15]. Ukrainian. Available from: https://www.dec.gov.ua/mtd/arterialna-gipertenziya-2/

Hallek M, Adorjan K, Behrends U, et al. Post-COVID Syndrome. DTSCH Arztebl Int. 2023;120(4):48-55. doi: https://doi.org/10.3238/arztebl.m2022.0409

Yong SJ. Long COVID or post-COVID-19 synd-rome: putative pathophysiology, risk factors, and treat-ments. Infect Dis. 2021;53(10):737-54. doi: https://doi.org/10.1080/23744235.2021.1924397

Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024;105(4S):117-314. doi: https://doi.org/10.1016/j.kint.2023.10.018

Makhanets L, Vinnychuk O, Hryhorkiv M. [Statistics: Laboratory Workshop in STATISTICA 12: Tutorial. Chernivtsi]. Chernivets nats un-t im. Yu. Fed-kovycha; 2023. 161 р. Ukrainian.

Scherer PE, Kirwan JP, Rosen CJ. Post-acute sequelae of COVID-19: a metabolic perspective. eLife. 2022;11:e78200. doi: https://doi.org/10.7554/eLife.78200

Al-Samerria S, Radovick S. The Role of Insulinlike Growth Factor-1 (IGF-1) in the Control of Neuro-endocrine Regulation of Growth. Cells. 2021;10(10):2664. doi: https://doi.org/10.3390/cells10102664

Kheirollahi V, Khadim A, Kiliaris G, et al. Transcriptional Profiling of Insulin-like Growth Factor Signa¬ling Components in Embryonic Lung Development and Idiopathic Pulmonary Fibrosis. Cells. 2022;11(12):1973. doi: https://doi.org/10.3390/cells11121973

Prlic MF, Brinar IV, Kos J, Dika Z, Ivandic E, Fucek M, et al. Serum Hepatocyte Growth Factor Concentration Correlates with Albuminuria in Individuals with Optimal Blood Pressure and Untreated Arterial Hypertension. Biomedicines. 2024;12(10):2233. doi: https://doi.org/10.3390/biomedicines12102233

Prlic MF, Brinar IV, Kos J, et al. Serum Hepato-cyte Growth Factor Concentration Correlates with Albuminuria in Individuals with Optimal Blood Pressure and Untreated Arterial Hypertension. Biomedicines. 2024;12(10):2233. doi: https://doi.org/10.3390/biomedicines12102233

Frangogiannis NG. Transforming growth factor–β in tissue fibrosis. J Exp Med. 2020;217(3):e20190103. doi: https://doi.org/10.1084/jem.20190103

Kieć-Wilk B, Stolarz-Skrzypek K, Sliwa A, et al. Peripheral blood concentrations of TGFβ1, IGF-1 and bFGF and remodelling of the left ventricle and blood vesselsin hypertensive patients. Kardiol Pol. 2010;68(9):996-1002. PMID: 20859888

Liu Y, Lin Y, Huang X, et al. Association of serum transforming growth factor β1 with left ventricular hypertrophy in children with primary hypertension. Eur J Pediatr. 2023;182:5439-46. doi: https://doi.org/10.1007/s00431-023-05219-2

Aula H, Skyttä T, Tuohinen S, et al. Transforming growth factor beta 1 levels predict echocardiographic changes at three years after adjuvant radiotherapy for breast cancer. Radiat Oncol. 2019;14(1):155. doi: https://doi.org/10.1186/s13014-019-1366-1

Wang L, Wang HL, Liu TT, et al. TGF-Beta as a Master Regulator of Diabetic Nephropathy. J Mol Sci. 2021;22(15):7881. doi: https://doi.org/10.3390/ijms22157881

Liu H, Chen YG. The Interplay Between TGF-β Signaling and Cell Metabolism. Front Cell Dev Biol. 2022;10:2022. doi: https://doi.org/10.3389/fcell.2022.846723

Xiao Y, Wang Y, Ryu J, et al. Upregulated TGF-β1 contributes to hyperglycaemia in type 2 diabetes by poten¬tiating glucagon signalling. Diabetologia. 2023;66:1142-55. doi: https://doi.org/10.1007/s00125-023-05889-5

Zhao L, Zou Y, Liu F. Transforming Growth Fac-tor-Beta1 in Diabetic Kidney Disease. Front Cell Dev Biol. 2020;8:2020. doi: https://doi.org/10.3389/fcell.2020.00187

[All-Ukrainian Association of Cardiologists of Ukraine. Recommendations of the All-Ukrainian Asso-ciation of Cardiologists of Ukraine on diagnosis, treatment and prevention of chronic heart failure. Pocket version [Internet]. 2024 [cited 2024 Dec 15]. Ukrainian. Available from: https://cardiohub.org.ua/wp-content/uploads/2024/09/Rekomendatsii-KHSN-A6-1.pdf

Azizi M. Aldosterone receptor antagonists Antagonistes du récepteur de l’aldostérone. Ann dEndo-crinologie. 2021;82(3-4):179-81. doi: https://doi.org/10.1016/j.ando.2020.03.009

##submission.downloads##

Опубліковано

2025-06-27

Як цитувати

1.
Kuryata O, Mytrokhina O, Stadnyk O. Transforming growth factor beta-1 in patients with hypertension who had COVID-19. Med. perspekt. [інтернет]. 27, Червень 2025 [цит. за 05, Грудень 2025];30(2):53-60. доступний у: https://journals.uran.ua/index.php/2307-0404/article/view/333373

Номер

Розділ

КЛІНІЧНА МЕДИЦИНА