The Method Of Logical Networks For Modeling Adaptive Knowledge Testing Systems
DOI:
https://doi.org/10.30837/ITSSI.2023.26.045Keywords:
software engineering; knowledge bases; algebra of finite predicates; logical networks, logical rules; reliability of tests; use of knowledge; model of the learning subjectAbstract
The subject of the research is the development of mathematical and algorithmic support of the intellectual toolkit for the analysis of sets of test tasks and the modeling of the process of interpreting the quality of sets of test tasks, which allows for objective and comprehensive continuous control of the knowledge of subjects of training, subject to the implementation of the concept of virtual distributed training (retraining).
The purpose of the research is to improve the effectiveness of monitoring the knowledge of subjects of education in the distance form of education through the use of adaptive computer testing methods based on models of logical networks and the algebra of finite predicates.
The following tasks are solved in the article: the formation of a testing model in a distributed virtual learning environment and a model of validity assessment based on the content of sets of test tasks.
The following methods are used: methods of logical networks and algebraic programming based on the algebra of finite predicates and predicate operations, intellectual analysis of information.
The following results were obtained: the principles of intellectual analysis were formulated in the development of a model of a universal logical network and its application to actual tasks of artificial intelligence in the field of informal information processing, namely, in the construction of knowledge testing systems for distributed virtual learning
Conclusions. Algorithms for optimal multi-stage adaptive testing of knowledge as part of distributed virtual learning models and methods for analyzing the success of training subjects have been improved. The use of conjunctive decomposition with binary predicates achieves the goal of the research, because in this way any multi-place predicate can be represented by a logical network simulating the process of knowledge testing, the model of the subject of learning is described.
References
Перелік посилань
Шубін І., Пітюкова М. Логічні мережі та їх використання для вирішення морфологічних завдань. Матеріали ІІІ Міжнародної конференції Інноваційні технології в науці та освіті. Амстердам, Нідерланди, 2019. С. 402-405. URL: http://dspace.opu.ua/jspui/bitstream/123456789/10382/1/%D0%86%D0%BD%D0%BD%D0%BE%D0%B2-%D0%A2%D0%B5%D1%85%D0%BD%D0%BE%D0%BB%D0%BE%D0%B3%D1%96%D1%97-2019-%D0%90%D0%BC%D1%81%D1%82%D0%B5%D1%80%D0%B4%D0%B0%D0%BC-%D0%9B%D0%BE%D0%B7%D0%B0%D0%BD%D0%BE%D0%B2%D0%B0-%D0%9F%D1%94%D1%82%D1%83%D1%88%D0%BA%D0%BE%D0%B2%D0%B0-%D0%94%D1%80%D1%83%D0%BA%D0%A1%D1%82%D0%B0%D1%82%D1%82%D1%8F.pdf
Backer, Р., Siemens G. Educational data mining and learning analytics. The Cambridge handbook of the learning sciences, 2019. 274 р. DOI:10.1017/CBO9781139519526.016
Fourier J. Un modele d'indexation relationnel pour les graphes conceptuels fondee sur une interpretation logique, Phd thesis Universitee. Grenoble, 1998. 302 p. URL: https://www.academia.edu/2686445/Un_mod%C3%A8le_dindexation_relationnel_pour_les_graphes_conceptuels_fond%C3%A9_sur_une_interpr%C3%A9tation_logique
Gruzdo I., Kyrychenko I., Tereshchenko G., Shanidze O. Analysis of Models Usability Methods Used on Design Stage to Increase Site Optimization, Proceedings of the 7th International Conference on Computational Linguistics and Intelligent Systems. (COLINS), Volume III: Intelligent Systems Workshop, 2023. In CEUR Workshop Proceedings, Vol. 3403, Р. 387-4093. URL: https://ceur-ws.org/Vol-3403/paper31.pdf
Shubin І. Development of conjunctive decomposition tools. CEUR Workshop Proceedings, 2021. Р. 890–900. URL: https://ceur-ws.org/Vol-2870/
Karataiev O., Sitnikov D., Sharonova N. A Method for Investigating Links between Discrete Data Features in Knowledge Bases in the Form of Predicate Equations, CEUR Workshop Proceedings, 2023, Р. 224–235. URL: https://ceur-ws.org/Vol-3387/paper17.pdf
Тест як інструмент педагогічного моніторингу, URL: http://opentest.com.ua/test-kak-instrument-izmereniya-urovnya-znanij (дата звернення: 20.11.2023.)
MyTestXPro – Система програм для створення та проведення комп’ютерного тестування, збору та аналізу їх результату, URL: http://mytest.net (дата звернення: 28.11.2023.)
Компютерна програма тестування OpenTEST2. URL: http://opentest.com. ua/kompyuternaya-programma-testirovaniya-znanij-opentest-2. (дата звернення: 21.11.2023.)
Конструктор тестів Keepsoft. URL: http://www.keepsoft.ru/simulator.htm. (дата звернення: 20.11.2023.)
Безкоштовна програма для тестування знань та онлайн підготовки. URL: http://xtls.org.ua/ test.html (дата звернення: 20.11.2023.)
Sharonova N. et al. Issues of Fact-based Information Analysis. International Conference on Computational Linguistics and Intelligent Systems. 2018. 178 р. URL: http://web.kpi.kharkov.ua/iks/wp-content/uploads/sites/113/2021/10/preface_colins_volume2_2018.pdf
Williams P. E-learning: what the literature tells us about distance education. An overview. Aslib Proceedings. Vol. 57. 2005. P 109–122. DOI: https://doi.org/10.1108/00012530510589083
Omran P. G., Wang K., Wang Z. An Embedding-based Approach to Rule Learning in Knowledge Graphs, IEEE Transactions on Knowledge and Data Engineering. Vol. 33(4). 2021. Р. 1348–1359. DOI: 10.1109/TKDE.2019.2941685
Pellissier-Tanon T., Weikum G., Suchanek F. F. YAGO 4: A Reasonable Knowledge Base, 17th International Conference, ESWC 2020, Heraklion, Crete, Greece, May 31–June 4. 2020, P. 583-596. DOI:10.1007/978-3-030-49461-2_34
Kyrychenko I., Malikin D. Research of Methods for Practical Educational Tasks Generation Based on Various Difficulty Levels, 6th International Conference on Computational Linguistics and Intelligent Systems (COLINS-2022), May 12–13, 2022, Gliwice, Poland. CEUR Workshop Proceedings 3171, Volume I: Main, 2022. Р. 1030-1042. URL: https://ceur-ws.org/Vol-3171/paper74.pdf
Omran P. G., Wang Z., Wang K. Scalable rule learning via learning representation, Twenty-Seventh International Joint Conference on Artificial Intelligence. IJCAI-18. 2018. Р. 2149-2155. DOI:10.24963/ijcai.2018/297
Svato M., Schockaert S., Davis J. STRiKE: Rule-Driven Relational Learning Using Stratified k-Entailment, in: ECAI, 2020. URL: https://ida.fel.cvut.cz/~kuzelka/pubs/ecai2020.pdf
Sharonova N., Gruzdo I., Tereshchenko G. Generalized Semantic Analysis Algorithm of Natural Language Texts for Various Functional Style Types. 6th International Conference on Computational Linguistics and Intelligent Systems (COLINS-2022), May 12–13, 2022, Gliwice, Poland. CEUR Workshop Proceedings 3171, Volume I: Main, Р. 16-26. URL: https://ceur-ws.org/Vol-3171/paper4.pdf
Barkovska, O. Research into Speech-to-text Transformation Module in the Proposed Model of a Speaker’s Automatic Speech Annotation. Innovative Technologies and Scientific Solutions for Industries. № 4 (22). 2022. Р. 5-13. DOI: https://doi.org/10.30837/ITSSI.2022.22.005
References
Shubin, I., Pitiukova, M. "Logichni mezhy ta jih vykorystannja dl`a vyrishennia morfologichnyh zavdan. Materials of the 3rd International Conference Innovative Technologies in Science and Education. Amsterdam, the Netherlands", 2019. Р. 402-405. available at: http://dspace.opu.ua/jspui/bitstream/123456789/10382/1/%D0%86%D0%BD%D0%BD%D0%BE%D0%B2-%D0%A2%D0%B5%D1%85%D0%BD%D0%BE%D0%BB%D0%BE%D0%B3%D1%96%D1%97-2019-%D0%90%D0%BC%D1%81%D1%82%D0%B5%D1%80%D0%B4%D0%B0%D0%BC-%D0%9B%D0%BE%D0%B7%D0%B0%D0%BD%D0%BE%D0%B2%D0%B0-%D0%9F%D1%94%D1%82%D1%83%D1%88%D0%BA%D0%BE%D0%B2%D0%B0-%D0%94%D1%80%D1%83%D0%BA%D0%A1%D1%82%D0%B0%D1%82%D1%82%D1%8F.pdf
Backer, Р., Siemens, G. (2019), "Educational data mining and learning analytics". The Cambridge handbook of the learning sciences, 274 р. DOI:10.1017/CBO9781139519526.016
Fourier, J. (1998), "Un modele d'indexation relationnel pour les graphes conceptuels fondee sur une interpretation logique", Phd thesis Universitee. Grenoble, 302 p. available at: https://www.academia.edu/2686445/Un_mod%C3%A8le_dindexation_relationnel_pour_les_graphes_conceptuels_fond%C3%A9_sur_une_interpr%C3%A9tation_logique
Gruzdo, I., Kyrychenko, I., Tereshchenko, G., Shanidze, O. "Analysis of Models Usability Methods Used on Design Stage to Increase Site Optimization", Proceedings of the 7th International Conference on Computational Linguistics and Intelligent Systems. (COLINS), Volume III: Intelligent Systems Workshop, 2023. In CEUR Workshop Proceedings, Vol. 3403, Р. 387-4093. available at: https://ceur-ws.org/Vol-3403/paper31.pdf
Shubin, І. "Development of conjunctive decomposition tools". CEUR Workshop Proceedings, 2021. Р. 890–900. available at: https://ceur-ws.org/Vol-2870/
Karataiev, O., Sitnikov, D., Sharonova, N. "A Method for Investigating Links between Discrete Data Features in Knowledge Bases in the Form of Predicate Equations", CEUR Workshop Proceedings, 2023, Р. 224–235. available at: https://ceur-ws.org/Vol-3387/paper17.pdf
"The test as a tool of pedagogical monitoring" ["Test yak instrument pedahohichnoho monitorynhu"] available at: http://opentest.com.ua/test-kak-instrument-izmereniya-urovnya-znanij (last accessed 20.11.2023.)
"MyTestXPro – System of programs for creating and conducting computer testing, collecting and analyzing their results". ["Systema prohram dlia stvorennia ta provedennia kompiuternoho testuvannia, zboru ta analizu yikh rezultativ"] available at: http://mytest.net (last accessed 28.11.2023.)
"Computer testing program OpenTEST2" ["Kompiuterna prohrama testuvannia OpenTEST2"]. available at: http://opentest.com. ua/kompyuternaya-programma-testirovaniya-znanij-opentest-2. (last accessed 21.11.2023.)
"Test designer Keepsoft". ["Konstruktor testiv Keepsoft"]. available at: http://www.keepsoft.ru/simulator.htm. (last accessed 20.11.2023.)
"Free program for knowledge testing and online preparation". ["Bezkoshtovna prohrama dlia testuvannia znan ta onlain pidhotovky"]. available at: http://xtls.org.ua/ test.html (last accessed 20.11.2023.)
Sharonova, N. et al. "Issues of Fact-based Information Analysis". International Conference on Computational Linguistics and Intelligent Systems. 2018. 178 р. available at: http://web.kpi.kharkov.ua/iks/wp-content/uploads/sites/113/2021/10/preface_colins_volume2_2018.pdf
Williams, P. (2005), "E-learning: what the literature tells us about distance education". An overview. Aslib Proceedings. Vol. 57. P 109–122. DOI: https://doi.org/10.1108/00012530510589083
Omran, P. G., Wang, K., Wang, Z. (2021), "An Embedding-based Approach to Rule Learning in Knowledge Graphs", IEEE Transactions on Knowledge and Data Engineering. Vol. 33(4). Р. 1348–1359. DOI: 10.1109/TKDE.2019.2941685
Pellissier-Tanon, T., Weikum, G., Suchanek, F. (2020), "F. YAGO 4: A Reasonable Knowledge Base", 17th International Conference, ESWC 2020, Heraklion, Crete, Greece, May 31–June 4. P. 583-596. DOI:10.1007/978-3-030-49461-2_34
Kyrychenko, I., Malikin, D. "Research of Methods for Practical Educational Tasks Generation Based on Various Difficulty Levels" 6th International Conference on Computational Linguistics and Intelligent Systems (COLINS-2022), May 12–13, 2022, Gliwice, Poland. CEUR Workshop Proceedings 3171, Volume I: Main, 2022. Р. 1030-1042. available at: https://ceur-ws.org/Vol-3171/paper74.pdf
Omran, P. G., Wang, Z., Wang, K. (2018), "Scalable rule learning via learning representation", Twenty-Seventh International Joint Conference on Artificial Intelligence. IJCAI-18. Р. 2149-2155. DOI:10.24963/ijcai.2018/297
Svato, M., Schockaert, S., Davis, J. "STRiKE: Rule-Driven Relational Learning Using Stratified k-Entailment", in: ECAI, 2020. available at: https://ida.fel.cvut.cz/~kuzelka/pubs/ecai2020.pdf
Sharonova, N., Gruzdo, I., Tereshchenko, G. "Generalized Semantic Analysis Algorithm of Natural Language Texts for Various Functional Style Types". 6th International Conference on Computational Linguistics and Intelligent Systems (COLINS-2022), May 12–13, 2022, Gliwice, Poland. CEUR Workshop Proceedings 3171, Volume I: Main, 2022. Р. 16-26. available at: https://ceur-ws.org/Vol-3171/paper4.pdf
Barkovska, O. (2022), "Research into Speech-to-text Transformation Module in the Proposed Model of a Speaker’s Automatic Speech Annotation". Innovative Technologies and Scientific Solutions for Industries. № 4 (22). Р. 5-13. DOI: https://doi.org/10.30837/ITSSI.2022.22.005
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Our journal abides by the Creative Commons copyright rights and permissions for open access journals.
Authors who publish with this journal agree to the following terms:
Authors hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-commercial and non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their published work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as earlier and greater citation of published work.