The Method Of Logical Networks For Modeling Adaptive Knowledge Testing Systems

Authors

DOI:

https://doi.org/10.30837/ITSSI.2023.26.045

Keywords:

software engineering; knowledge bases; algebra of finite predicates; logical networks, logical rules; reliability of tests; use of knowledge; model of the learning subject

Abstract

The subject of the research is the development of mathematical and algorithmic support of the intellectual toolkit for the analysis of sets of test tasks and the modeling of the process of interpreting the quality of sets of test tasks, which allows for objective and comprehensive continuous control of the knowledge of subjects of training, subject to the implementation of the concept of virtual distributed training (retraining).

The purpose of the research is to improve the effectiveness of monitoring the knowledge of subjects of education in the distance form of education through the use of adaptive computer testing methods based on models of logical networks and the algebra of finite predicates.

The following tasks are solved in the article: the formation of a testing model in a distributed virtual learning environment and a model of validity assessment based on the content of sets of test tasks.

The following methods are used: methods of logical networks and algebraic programming based on the algebra of finite predicates and predicate operations, intellectual analysis of information.

The following results were obtained: the principles of intellectual analysis were formulated in the development of a model of a universal logical network and its application to actual tasks of artificial intelligence in the field of informal information processing, namely, in the construction of knowledge testing systems for distributed virtual learning

Conclusions. Algorithms for optimal multi-stage adaptive testing of knowledge as part of distributed virtual learning models and methods for analyzing the success of training subjects have been improved. The use of conjunctive decomposition with binary predicates achieves the goal of the research, because in this way any multi-place predicate can be represented by a logical network simulating the process of knowledge testing, the model of the subject of learning is described.

Author Biographies

Volodymyr Liashyk, Kharkiv National University of Radio Electronics

Postgraduate

Ihor Shubin, Kharkiv National University of Radio Electronics

PhD (Engineering Sciences), Associate Professor,  Professor at the Department of Software

References

Перелік посилань

Шубін І., Пітюкова М. Логічні мережі та їх використання для вирішення морфологічних завдань. Матеріали ІІІ Міжнародної конференції Інноваційні технології в науці та освіті. Амстердам, Нідерланди, 2019. С. 402-405. URL: http://dspace.opu.ua/jspui/bitstream/123456789/10382/1/%D0%86%D0%BD%D0%BD%D0%BE%D0%B2-%D0%A2%D0%B5%D1%85%D0%BD%D0%BE%D0%BB%D0%BE%D0%B3%D1%96%D1%97-2019-%D0%90%D0%BC%D1%81%D1%82%D0%B5%D1%80%D0%B4%D0%B0%D0%BC-%D0%9B%D0%BE%D0%B7%D0%B0%D0%BD%D0%BE%D0%B2%D0%B0-%D0%9F%D1%94%D1%82%D1%83%D1%88%D0%BA%D0%BE%D0%B2%D0%B0-%D0%94%D1%80%D1%83%D0%BA%D0%A1%D1%82%D0%B0%D1%82%D1%82%D1%8F.pdf

Backer, Р., Siemens G. Educational data mining and learning analytics. The Cambridge handbook of the learning sciences, 2019. 274 р. DOI:10.1017/CBO9781139519526.016

Fourier J. Un modele d'indexation relationnel pour les graphes conceptuels fondee sur une interpretation logique, Phd thesis Universitee. Grenoble, 1998. 302 p. URL: https://www.academia.edu/2686445/Un_mod%C3%A8le_dindexation_relationnel_pour_les_graphes_conceptuels_fond%C3%A9_sur_une_interpr%C3%A9tation_logique

Gruzdo I., Kyrychenko I., Tereshchenko G., Shanidze O. Analysis of Models Usability Methods Used on Design Stage to Increase Site Optimization, Proceedings of the 7th International Conference on Computational Linguistics and Intelligent Systems. (COLINS), Volume III: Intelligent Systems Workshop, 2023. In CEUR Workshop Proceedings, Vol. 3403, Р. 387-4093. URL: https://ceur-ws.org/Vol-3403/paper31.pdf

Shubin І. Development of conjunctive decomposition tools. CEUR Workshop Proceedings, 2021. Р. 890–900. URL: https://ceur-ws.org/Vol-2870/

Karataiev O., Sitnikov D., Sharonova N. A Method for Investigating Links between Discrete Data Features in Knowledge Bases in the Form of Predicate Equations, CEUR Workshop Proceedings, 2023, Р. 224–235. URL: https://ceur-ws.org/Vol-3387/paper17.pdf

Тест як інструмент педагогічного моніторингу, URL: http://opentest.com.ua/test-kak-instrument-izmereniya-urovnya-znanij (дата звернення: 20.11.2023.)

MyTestXPro – Система програм для створення та проведення комп’ютерного тестування, збору та аналізу їх результату, URL: http://mytest.net (дата звернення: 28.11.2023.)

Компютерна програма тестування OpenTEST2. URL: http://opentest.com. ua/kompyuternaya-programma-testirovaniya-znanij-opentest-2. (дата звернення: 21.11.2023.)

Конструктор тестів Keepsoft. URL: http://www.keepsoft.ru/simulator.htm. (дата звернення: 20.11.2023.)

Безкоштовна програма для тестування знань та онлайн підготовки. URL: http://xtls.org.ua/ test.html (дата звернення: 20.11.2023.)

Sharonova N. et al. Issues of Fact-based Information Analysis. International Conference on Computational Linguistics and Intelligent Systems. 2018. 178 р. URL: http://web.kpi.kharkov.ua/iks/wp-content/uploads/sites/113/2021/10/preface_colins_volume2_2018.pdf

Williams P. E-learning: what the literature tells us about distance education. An overview. Aslib Proceedings. Vol. 57. 2005. P 109–122. DOI: https://doi.org/10.1108/00012530510589083

Omran P. G., Wang K., Wang Z. An Embedding-based Approach to Rule Learning in Knowledge Graphs, IEEE Transactions on Knowledge and Data Engineering. Vol. 33(4). 2021. Р. 1348–1359. DOI: 10.1109/TKDE.2019.2941685

Pellissier-Tanon T., Weikum G., Suchanek F. F. YAGO 4: A Reasonable Knowledge Base, 17th International Conference, ESWC 2020, Heraklion, Crete, Greece, May 31–June 4. 2020, P. 583-596. DOI:10.1007/978-3-030-49461-2_34

Kyrychenko I., Malikin D. Research of Methods for Practical Educational Tasks Generation Based on Various Difficulty Levels, 6th International Conference on Computational Linguistics and Intelligent Systems (COLINS-2022), May 12–13, 2022, Gliwice, Poland. CEUR Workshop Proceedings 3171, Volume I: Main, 2022. Р. 1030-1042. URL: https://ceur-ws.org/Vol-3171/paper74.pdf

Omran P. G., Wang Z., Wang K. Scalable rule learning via learning representation, Twenty-Seventh International Joint Conference on Artificial Intelligence. IJCAI-18. 2018. Р. 2149-2155. DOI:10.24963/ijcai.2018/297

Svato M., Schockaert S., Davis J. STRiKE: Rule-Driven Relational Learning Using Stratified k-Entailment, in: ECAI, 2020. URL: https://ida.fel.cvut.cz/~kuzelka/pubs/ecai2020.pdf

Sharonova N., Gruzdo I., Tereshchenko G. Generalized Semantic Analysis Algorithm of Natural Language Texts for Various Functional Style Types. 6th International Conference on Computational Linguistics and Intelligent Systems (COLINS-2022), May 12–13, 2022, Gliwice, Poland. CEUR Workshop Proceedings 3171, Volume I: Main, Р. 16-26. URL: https://ceur-ws.org/Vol-3171/paper4.pdf

Barkovska, O. Research into Speech-to-text Transformation Module in the Proposed Model of a Speaker’s Automatic Speech Annotation. Innovative Technologies and Scientific Solutions for Industries. № 4 (22). 2022. Р. 5-13. DOI: https://doi.org/10.30837/ITSSI.2022.22.005

References

Shubin, I., Pitiukova, M. "Logichni mezhy ta jih vykorystannja dl`a vyrishennia morfologichnyh zavdan. Materials of the 3rd International Conference Innovative Technologies in Science and Education. Amsterdam, the Netherlands", 2019. Р. 402-405. available at: http://dspace.opu.ua/jspui/bitstream/123456789/10382/1/%D0%86%D0%BD%D0%BD%D0%BE%D0%B2-%D0%A2%D0%B5%D1%85%D0%BD%D0%BE%D0%BB%D0%BE%D0%B3%D1%96%D1%97-2019-%D0%90%D0%BC%D1%81%D1%82%D0%B5%D1%80%D0%B4%D0%B0%D0%BC-%D0%9B%D0%BE%D0%B7%D0%B0%D0%BD%D0%BE%D0%B2%D0%B0-%D0%9F%D1%94%D1%82%D1%83%D1%88%D0%BA%D0%BE%D0%B2%D0%B0-%D0%94%D1%80%D1%83%D0%BA%D0%A1%D1%82%D0%B0%D1%82%D1%82%D1%8F.pdf

Backer, Р., Siemens, G. (2019), "Educational data mining and learning analytics". The Cambridge handbook of the learning sciences, 274 р. DOI:10.1017/CBO9781139519526.016

Fourier, J. (1998), "Un modele d'indexation relationnel pour les graphes conceptuels fondee sur une interpretation logique", Phd thesis Universitee. Grenoble, 302 p. available at: https://www.academia.edu/2686445/Un_mod%C3%A8le_dindexation_relationnel_pour_les_graphes_conceptuels_fond%C3%A9_sur_une_interpr%C3%A9tation_logique

Gruzdo, I., Kyrychenko, I., Tereshchenko, G., Shanidze, O. "Analysis of Models Usability Methods Used on Design Stage to Increase Site Optimization", Proceedings of the 7th International Conference on Computational Linguistics and Intelligent Systems. (COLINS), Volume III: Intelligent Systems Workshop, 2023. In CEUR Workshop Proceedings, Vol. 3403, Р. 387-4093. available at: https://ceur-ws.org/Vol-3403/paper31.pdf

Shubin, І. "Development of conjunctive decomposition tools". CEUR Workshop Proceedings, 2021. Р. 890–900. available at: https://ceur-ws.org/Vol-2870/

Karataiev, O., Sitnikov, D., Sharonova, N. "A Method for Investigating Links between Discrete Data Features in Knowledge Bases in the Form of Predicate Equations", CEUR Workshop Proceedings, 2023, Р. 224–235. available at: https://ceur-ws.org/Vol-3387/paper17.pdf

"The test as a tool of pedagogical monitoring" ["Test yak instrument pedahohichnoho monitorynhu"] available at: http://opentest.com.ua/test-kak-instrument-izmereniya-urovnya-znanij (last accessed 20.11.2023.)

"MyTestXPro – System of programs for creating and conducting computer testing, collecting and analyzing their results". ["Systema prohram dlia stvorennia ta provedennia kompiuternoho testuvannia, zboru ta analizu yikh rezultativ"] available at: http://mytest.net (last accessed 28.11.2023.)

"Computer testing program OpenTEST2" ["Kompiuterna prohrama testuvannia OpenTEST2"]. available at: http://opentest.com. ua/kompyuternaya-programma-testirovaniya-znanij-opentest-2. (last accessed 21.11.2023.)

"Test designer Keepsoft". ["Konstruktor testiv Keepsoft"]. available at: http://www.keepsoft.ru/simulator.htm. (last accessed 20.11.2023.)

"Free program for knowledge testing and online preparation". ["Bezkoshtovna prohrama dlia testuvannia znan ta onlain pidhotovky"]. available at: http://xtls.org.ua/ test.html (last accessed 20.11.2023.)

Sharonova, N. et al. "Issues of Fact-based Information Analysis". International Conference on Computational Linguistics and Intelligent Systems. 2018. 178 р. available at: http://web.kpi.kharkov.ua/iks/wp-content/uploads/sites/113/2021/10/preface_colins_volume2_2018.pdf

Williams, P. (2005), "E-learning: what the literature tells us about distance education". An overview. Aslib Proceedings. Vol. 57. P 109–122. DOI: https://doi.org/10.1108/00012530510589083

Omran, P. G., Wang, K., Wang, Z. (2021), "An Embedding-based Approach to Rule Learning in Knowledge Graphs", IEEE Transactions on Knowledge and Data Engineering. Vol. 33(4). Р. 1348–1359. DOI: 10.1109/TKDE.2019.2941685

Pellissier-Tanon, T., Weikum, G., Suchanek, F. (2020), "F. YAGO 4: A Reasonable Knowledge Base", 17th International Conference, ESWC 2020, Heraklion, Crete, Greece, May 31–June 4. P. 583-596. DOI:10.1007/978-3-030-49461-2_34

Kyrychenko, I., Malikin, D. "Research of Methods for Practical Educational Tasks Generation Based on Various Difficulty Levels" 6th International Conference on Computational Linguistics and Intelligent Systems (COLINS-2022), May 12–13, 2022, Gliwice, Poland. CEUR Workshop Proceedings 3171, Volume I: Main, 2022. Р. 1030-1042. available at: https://ceur-ws.org/Vol-3171/paper74.pdf

Omran, P. G., Wang, Z., Wang, K. (2018), "Scalable rule learning via learning representation", Twenty-Seventh International Joint Conference on Artificial Intelligence. IJCAI-18. Р. 2149-2155. DOI:10.24963/ijcai.2018/297

Svato, M., Schockaert, S., Davis, J. "STRiKE: Rule-Driven Relational Learning Using Stratified k-Entailment", in: ECAI, 2020. available at: https://ida.fel.cvut.cz/~kuzelka/pubs/ecai2020.pdf

Sharonova, N., Gruzdo, I., Tereshchenko, G. "Generalized Semantic Analysis Algorithm of Natural Language Texts for Various Functional Style Types". 6th International Conference on Computational Linguistics and Intelligent Systems (COLINS-2022), May 12–13, 2022, Gliwice, Poland. CEUR Workshop Proceedings 3171, Volume I: Main, 2022. Р. 16-26. available at: https://ceur-ws.org/Vol-3171/paper4.pdf

Barkovska, O. (2022), "Research into Speech-to-text Transformation Module in the Proposed Model of a Speaker’s Automatic Speech Annotation". Innovative Technologies and Scientific Solutions for Industries. № 4 (22). Р. 5-13. DOI: https://doi.org/10.30837/ITSSI.2022.22.005

Published

2023-12-27

How to Cite

Liashyk, V., & Shubin, I. (2023). The Method Of Logical Networks For Modeling Adaptive Knowledge Testing Systems. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (4(26), 45–57. https://doi.org/10.30837/ITSSI.2023.26.045