Models of the classifier of prerequisites for the occurrence of road accidents to predict dangerous situations at intersections

Authors

DOI:

https://doi.org/10.30837/2522-9818.2025.2.177

Keywords:

Object classification on an image; Computer vision; Machine Learning; Artificial Intelligence; Information Technologies; Nvidia Jetson; road traffic accidents prediction; YOLO; DetectNet_v2; Detectron2.

Abstract

 

The subject matter: this study focuses on the preconditions for the occurrence of road traffic accidents at intersections and areas with limited visibility; the use of computer vision models for classifying the preconditions of road traffic accidents and evaluating the effectiveness of their use in real-time operation. The goal of the study is to compare computer vision models for the task of classifying the preconditions of traffic accidents for real-time operation. The study involves comparing models using the Jetson TX2 platform and determining the effectiveness of this approach for generating real-time warning signals for drivers. Tasks: explore computer vision models such as Detectron2 and YOLOv7 for the task of classifying traffic accident preconditions in terms of model performance, ease of dataset creation, model training, and deployment. Compare YOLOv8 and DetectNet_v2 on a single-board computer Jetson TX2 in terms of processing speed. The methods used include training and using machine learning models, as well as simulating hazardous situations using software such as BeamNG.tech and CARLA. A comparative analysis of the application results of the models was conducted using performance evaluation metrics. The main results of the study include identifying the most effective model for classification tasks on the Jetson TX2 single-board computer – DetectNet_v2; a positive evaluation of the effectiveness of this approach for real-time driver warning, although certain limitations were noted regarding the size of the training dataset and the complexity of its preparation. Conclusions. The following computer vision algorithms were examined: Detectron2, YOLOv7, and DetectNet_v2. It was found that YOLOv7 outperforms Detectron2 in detecting the preconditions of traffic accidents in images. However, DetectNet_v2 was found to be better suited for deployment on the Jetson TX2 single-board computer compared to YOLOv7. Additionally, based on experimental findings, it was concluded that the application of this approach to predicting accident preconditions is problematic due to difficulties in creating a training dataset – specifically, the variability of precondition scenarios.

Author Biographies

Oleksandr Byzkrovnyi, Kharkiv National University of Radio Electronics

PhD Student at the Department of Software Engineering

Kyrylo Smelyakov, Kharkiv National University of Radio Electronics

Doctor of Sciences (Engineering), Professor, Head at the Department of Software Engineering

References

Список літератури

Speed Bump and Pothole Detection Using Deep Neural Network with Images Captured through ZED Camera / J.-E. Peralta-López та ін. Applied Sciences. 2023. Vol. 13, № 14. 8349 р. DOI: https://doi.org/10.3390/app13148349

Speed Bump Detection Using Accelerometric Features: A Genetic Algorithm Approach / J. Celaya-Padill. Sensors. 2018. Vol. 18, № 2. 443 р. DOI: https://doi.org/10.3390/s18020443

Eslami Nezhad S. A., Delavar M. R. An integrated network-constrained spatial analysis for car accidents: a case study of tehran city, iran. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2019. XLII-4/W18. Р. 335–342. DOI: https://doi.org/10.5194/isprs-archives-xlii-4-w18-335-2019

Contributors to Wikimedia projects. Kernel density estimation – Wikipedia. Wikipedia, the free encyclopedia. URL: https://en.wikipedia.org/wiki/Kernel_density_estimation (дата звернення: 19.04.2025).

Ravindran V., Viswanathan L., Rangaswamy S. A Novel Approach to Automatic Road-Accident Detection using Machine Vision Techniques. International Journal of Advanced Computer Science and Applications. 2016. Vol. 7, № 11. DOI: https://doi.org/10.14569/ijacsa.2016.071130

Robles-Serrano S., Sanchez-Torres G., Branch-Bedoya J. Automatic Detection of Traffic Accidents from Video Using Deep Learning Techniques. Computers. 2021. Vol. 10. № 11. 148 р. DOI: https://doi.org/10.3390/computers10110148

Amirfakhrian M., Parhizkar M. Integration of image segmentation and fuzzy theory to improve the accuracy of damage detection areas in traffic accidents. Journal of Big Data. 2021. Vol. 8, № 1. DOI: https://doi.org/10.1186/s40537-021-00539-2

Zimmermann H. J. Fuzzy set theory. Wiley Interdisciplinary Reviews: Computational Statistics. 2010. Vol. 2, № 3. Р. 317–332. DOI: https://doi.org/10.1002/wics.82

An Automatic Car Accident Detection Method Based on Cooperative Vehicle Infrastructure Systems / D. Tian та ін. IEEE Access. 2019. Vol.7. Р. 127453–127463. DOI: https://doi.org/10.1109/access.2019.2939532

Wang S. Traffic Accident Prediction based on CNN and Time of Commuting after Accident. Highlights in Science, Engineering and Technology. 2024. Vol. 118. Р. 65–71. DOI: https://doi.org/10.54097/5t9mba88

Suzen A. A., Duman B., Sen B. Benchmark Analysis of Jetson TX2, Jetson Nano and Raspberry PI using Deep-CNN. 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Ankara, Turkey, 2020 р. 2020. DOI: https://doi.org/10.1109/hora49412.2020.9152915

Detection, instance segmentation, and classification for astronomical surveys with deep learning (DeepDISC): Detectron2 implementation and demonstration with hyper suprime-cam data / G. Merz та ін. Monthly Notices of the Royal Astronomical Society. 2023. DOI: https://doi.org/10.1093/mnras/stad2785

Wang C.-Y., Bochkovskiy A., Mark Liao H.-Y. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. Computer Vision and Pattern Recognition. 2022. DOI: https://doi.org/10.48550/arxiv.2207.02696

BeamNG.tech Contributors. BeamNG.tech. BeamNG.tech. URL: https://beamng.tech/ (дата звернення: 25.02.2025).

Comparison of potential road accident detection algorithms for modern machine vision system / O. Byzkrovnyi та ін. Environment. technologies. resources. Proceedings of the International Scientific and Practical Conference. 2023. Vol. 3. Р. 50–55. DOI: https://doi.org/10.17770/etr2023vol3.7299

Comparison of Object Detection Algorithms for the Task of Person Detection on Jetson TX2 NX Platform / O. Byzkrovnyi та ін. 2024 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania, 2024 р. 2024. DOI: https://doi.org/10.1109/estream61684.2024.10542592

References

Peralta-López, J., Morales-Viscaya, J., Lázaro-Mata, D., Villaseñor-Aguilar, M., Prado-Olivarez, J., Pérez-Pinal, F., Gutiérrez, A. (2023), "Speed bump and pothole detection using deep neural network with images captured through zed camera". Applied Sciences, № 13(14), 8349 р. DOI: https://doi.org/10.3390/app13148349

Celaya-Padilla, J. M., Galván-Tejada, C. E., López-Monteagudo, F. E., Alonso-González, O., Moreno-Báez, A., Martínez‐Torteya, A., Gamboa-Rosales, H. (2018), "Speed bump detection using accelerometric features: a genetic algorithm approach". Sensors, № 18(2), 443 р. DOI: https://doi.org/10.3390/s18020443

Eslaminezhad, S. A. and Delavar, M. R. (2019), "An integrated network-constrained spatial analysis for car accidents: a case study of tehran city, iran". The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W18, Р. 335–342. DOI: https://doi.org/10.5194/isprs-archives-xlii-4-w18-335-2019

Contributors to Wikimedia projects, (2005), "Kernel density estimation – Wikipedia. Wikipedia, the free encyclopedia", available at: https://en.wikipedia.org/wiki/Kernel_density_estimation (last accessed 25.02.2025)

Ravindran, V., Viswanathan, L., & Rangaswamy, S. (2016), "A novel approach to automatic road-accident detection using machine vision techniques". International Journal of Advanced Computer Science and Applications, №7(11). DOI: https://doi.org/10.14569/ijacsa.2016.071130

Robles-Serrano, S., Torres, G. S., & Branch, J. W. (2021), "Automatic detection of traffic accidents from video using deep learning techniques". Computers, №10(11), 148 р. DOI: https://doi.org/10.3390/computers10110148

Amirfakhrian, M. and Parhizkar, M. (2021), "Іntegration of image segmentation and fuzzy theory to improve the accuracy of damage detection areas in traffic accidents". Journal of Big Data, №8(1). DOI: https://doi.org/10.1186/s40537-021-00539-2

Zimmermann, H. (2010), "Fuzzy set theory". WIREs Computational Statistics, №2(3), Р. 317–332. DOI: https://doi.org/10.1002/wics.82

Tian, D., Zhang, C., Duan, X., & Wang, X. (2019), "An automatic car accident detection method based on cooperative vehicle infrastructure systems". IEEE Access, № 7, Р. 127453-127463. DOI: https://doi.org/10.1109/access.2019.2939532

Wang, S. (2024), "Traffic accident prediction based on cnn and time of commuting after accident". Highlights in Science, Engineering and Technology, №118, Р. 65–71. DOI: https://doi.org/10.54097/5t9mba88

Süzen, A. A., Duman, B., & Şen, B. (2020). "Benchmark analysis of jetson tx2, jetson nano and raspberry pi using deep-cnn". 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), № 1-5. DOI: https://doi.org/10.1109/hora49412.2020.9152915

Merz, G., Liu, Y., Burke, C. J., Aleo, P., Liu, X., Kind, M. C., Liu, Y. (2023), "Detection, instance segmentation, and classification for astronomical surveys with deep learning (deepdisc): detectron2 implementation and demonstration with hyper suprime-cam data". Monthly Notices of the Royal Astronomical Society, № 526(1), Р. 1122–1137. DOI: https://doi.org/10.1093/mnras/stad2785

Wang, C., Bochkovskiy, A., & Liao, H. M. (2022), "Yolov7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors". Computer Vision and Pattern Recognition. DOI: https://doi.org/10.48550/arxiv.2207.02696

"BeamNG.tech Contributors, BeamNG.tech". 2023. available at: https://beamng.tech/ (last accessed: 25.02.2025)

Byzkrovnyi, O., Smelyakov, K., Chupryna, A., Savulionienė, L., & Sakalys, P. (2023), "Comparison of potential road accident detection algorithms for modern machine vision system". Environment. technologies. resources. Proceedings of the International Scientific and Practical Conference, №3, Р. 50–55. DOI: https://doi.org/10.17770/etr2023vol3.7299

Byzkrovnyi, O., Smelyakov, K., Chupryna, A., & Lanovyy, O. (2024), "Comparison of object detection algorithms for the task of person detection on jetson tx2 nx platform". IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream). DOI: https://doi.org/10.1109/estream61684.2024.10542592

Published

2025-07-08

How to Cite

Byzkrovnyi, O., & Smelyakov, K. (2025). Models of the classifier of prerequisites for the occurrence of road accidents to predict dangerous situations at intersections. INNOVATIVE TECHNOLOGIES AND SCIENTIFIC SOLUTIONS FOR INDUSTRIES, (2(32), 177–187. https://doi.org/10.30837/2522-9818.2025.2.177