Расчетная модель для анализа долговечности элементов конструкций с дефектами

Авторы

  • Vasyl I. Hnitko Институт проблем машиностроения им. А. Н. Подгорного НАН Украины (61046, Украина, г. Харьков, ул. Пожарского, 2/10), Ukraine https://orcid.org/0000-0003-2475-5486
  • Kyrylo H. Dehtiarov Институт проблем машиностроения им. А. Н. Подгорного НАН Украины (61046, Украина, г. Харьков, ул. Пожарского, 2/10), Ukraine https://orcid.org/0000-0002-4486-2468
  • Roman P. Moskalenko Харьковский национальный университет имени В. Н. Каразина (61022, Украина, г. Харьков, площадь Свободы, 4), Ukraine https://orcid.org/0000-0002-5167-2793
  • Olena O. Strelnikova Институт проблем машиностроения им. А. Н. Подгорного НАН Украины (61046, Украина, г. Харьков, ул. Пожарского, 2/10), Харьковский национальный университет имени В. Н. Каразина (61022, Украина, г. Харьков, площадь Свободы, 4), Ukraine https://orcid.org/0000-0003-0707-7214

Ключевые слова:

долговечность, трещина, коэффициент интенсивности напряжений, сингулярные интегральные уравнения, критерий Пэриса

Аннотация

Разработана методика определения количества циклов до разрушения элементов конструкций, подвергающихся воздействию циклического нагружения (растяжение-сжатие). Проводится анализ статического и динамического напряженно-деформированного состояния элемента конструкции с помощью численных методов конечных и граничных элементов с целью выяснения зон концентрации напряжений. Избираются модельные трещины, которые помещаются в зоны наибольшей концентрации напряжений. Предложена база данных по модельным трещинам. С использованием порогового значения коэффициента интенсивности напряжений определяется начальная длина, при которой начинается развитие трещин. Для каждой трещины из базы данных на основании критерия Пэриса находится критическое количество циклов, за которое трещина подрастает до недопустимых размеров. Предложен метод определения коэффициентов интенсивности напряжений для элемента конструкции с трещинами. Задача сведена к решению сингулярных интегральных уравнений. Для получения численного решения этих уравнений использован метод граничных элементов. Плотности, которые фигурируют как неизвестные функции в рассматриваемых интегральных уравнениях, используются для вычисления коэффициентов интенсивности напряжений. Проведено сравнение аналитических и численных решений сингулярных уравнений. Определено критическое число циклов для пластин с изолированными трещинами и цепочками трещин, трещинами, находящимися у отверстий и границ элементов. Установлено, что при одинаковом уровне нагрузки меньшее критическое число циклов соответствует элементу конструкции с трещинами, которые находятся в непосредственной близости от технологического отверстия. Проведен анализ развития усталостной трещины у отверстий в упруго-пластической формулировке с целью определения количества циклов до разрушения, дана оценка количества циклов до появления усталостной трещины.

Биографии авторов

Vasyl I. Hnitko, Институт проблем машиностроения им. А. Н. Подгорного НАН Украины (61046, Украина, г. Харьков, ул. Пожарского, 2/10)

Кандидат технических наук

Olena O. Strelnikova, Институт проблем машиностроения им. А. Н. Подгорного НАН Украины (61046, Украина, г. Харьков, ул. Пожарского, 2/10), Харьковский национальный университет имени В. Н. Каразина (61022, Украина, г. Харьков, площадь Свободы, 4)

Доктор технических наук

Библиографические ссылки

Andreykiv, A. Ye. & Darchuk, A. I. (1987). Ustalostnoye razrusheniye i dolgovechnost konstruktsiy [Fatigue failure and durability of structures]. Kiyev: Naukova Dumka, 404 p. (in Russian).

Makhutov, N. A. (1981). Deformatsionnyye kriterii razrusheniya i raschet elementov konstruktsiy na ustalostnuyu prochnost [Deformation criteria of failure and calculation of structural elements for fatigue strength].Moscow: Mashinostroyeniye, 272 p. (in Russian).

Panasyuk, V. V., Andreykiv, A. Ye., & Kovchik, S. Ye. (1971) Metody otsenki treshchinostoykosti konstruktsionnykh materialov [Methods for assessing the crack resistance of structural materials]. Kiyev: Naukova dumka, 278 p. (in Russian).

Fomichev, P. A. & Zvyagintsev, V. V. (2000). Prediction of the fatigue life of a notched body by the local stress-strain state. Part 1. Determination of stresses and strains in a notch under elastoplastic cyclic deformation. Strength of Materials, vol. 32, pp. 234–240. https://doi.org/10.1007/BF02509850.

Fomichev, P. A. (2000). Prediction of Fatigue Life of a Notched Body by the LocalStress-StrainState. Part 3. Allowing for Stress and Strain Gradients. Strength of Materials, vol. 32, pp. 316–322. https://doi.org/10.1023/A:1026696316228.

Zum, T. (1996). Verformungsverhalten von stahlbetontragwerken unter Betrieb-slelastung. Mitt. Inst. Wekst. Baum., no. 3, pp. 1–195.

Abdelbaki, N., Bouali, E., Gaceb, M., & Bettayeb, M. (2009). Study of defect admissibility in gas pipelines based on fracture mechanics. J. Eng. Sci. Tech. (JESTEC), vol. 4, pp. 111–121.

Kantor, B., Strelnikova, O., Medvedovska, T., Rzhevska, I., Yeseleva, O., Lynnyk, O., & Zelenska, O. (2011). Rozrakhunok zalyshkovoho resursu elementiv protochnoyi chastyny hidroturbin HES ta HAES [Calculation of residual life of elements of flowing part of hydropower turbines of hydropower and hydroelectric power plants]: Guidelines regulatory document. SOU-NMEV 40.1 –21677681–51: 2011: Approved. Ministry of Energy and Coal Industry of Ukraine: entered into force 07.07.11. Kyiv: Ministry of Energy and Coal Industry ofUkraine, 76 p. (in Ukrainian).

Stasevic, M. (2014). Attachment estimates century construction of the tower installations for oil and gas exploration: Doctoral thesis.UniversityofNovi Sad. Faculty of Techn. Sci., 168 р.

Bettayeb, M., Bouali, E., Abdelbaki, N., & Gaceb, M. (2012). Establishment of a database and a classification of the defects in the metal of pipes according to their severity. Procedia Engineering, vol. 42, pp. 607–615. https://doi.org/10.1016/j.proeng.2012.07.453.

Maksimovic, Mirko S., Vasovich, Ivana V., Maksimovic, Katarina S. Trisovich, Natasha, & Maksimovic, Stevan M. (2018). Residual life estimation of cracked aircraft structural components. FME Transactions, vol. 124, no. 46, pp. 124–128. https://doi.org/10.5937/fmet1801124M.

Kastratovic, G., Vidanovic, N., Grbovic, A., & Rasuo, B. (2018). Approximate determination of stress intensity factor for multiple surface cracks. FME Transactions, vol. 46, iss. 1, pp. 39–45. https://doi.org/10.5937/fmet1801039K.

Strelnikova, Ye. A. & Kovch, O. I. (2015). Issledovaniye vzaimnogo vliyaniya por v svarnom shve pod vozdeystviyem termosilovoy nagruzki [Investigation of the mutual influence of pores in the weld under thermo-mechanical load]. Vostochno-Yevropeyskiy zhurnal peredovykh tekhnologiy - Eastern-European Journal of Enterprise Technologies, vol. 5, no. 7 (77), pp. 59–63 (in Russian). https://doi.org/10.15587/1729-4061.2015.51869.

Zaydenvarg, O. L. & Strelnikova, Ye. A. (2009). Gipersingulyarnyye uravneniya v zadachakh prochnosti elementov konstruktsiy s treshchinami pri temperaturnom nagruzhenii [Hypersingular equations in the problems of strength of structural elements with cracks under temperature loading]. Visn. Khark. nats. un-tu. Ser. Matematychne modelyuvannya. Informatsiyni tekhnolohiyi. Avtomatyzovani systemy upravlinnya – Bulletin of Kharkiv National University. Series: Mathematical Modeling. Information Technology. Automated Control System, no. 847, pp. 191–196 (in Russian).

Lessenden, S. J., Pissot, S. P., Tretheway, M. V., & Naynaed, K. P. (2006). Torsion response of cracked steel shaft. Fatique fract. Eng. Mater. Struct., vol. 30, pp. 734–747. https://doi.org/10.1111/j.1460-2695.2007.01149.x.

Misiura, S. Yu., Smetankina, N. V., & Misiura, Ye. Yu. (2019). Ratsionalne modeliuvannia kryshky hidroturbiny dlia analizu mitsnosti [Rational modeling of the turbine cover for strength analysis]. Visnyk NTU «KhPI». Seriia: Dynamika i mitsnist mashyn – Bulletin of NTU "KhPI". Series: Dynamics and Strength of Machines, no. 1, pp. 34–39 (in Ukrainian). https://doi.org/10.20998/2078-9130.2019.1.187415.

Medvedovskaya, T., Strelnikova, E., & Medvedyeva, K. (2015). Free hydroelastic vibrations of hydroturbine head covers. Int. J. Eng. and Advanced Research Techn., vol. 1, no. 1, pp. 45–50. https://doi.org/10.13140/RG.2.1.3527.4961.

Yeseleva, Ye. V., Gnitko, V. I., & Strelnikova, Ye. A. (2006). Sobstvennyye kolebaniya sosudov vysokogo davleniya pri vzaimodeystvii s zhidkostyu [Natural vibrations of pressure vessels during interaction with a liquid]. Problemy Mashinostroyeniya – Journal of Mechanical Engineering, vol. 9. no 1. pp.105–118. (in Russian).

Panasyuk, V. V., Savruk, M. P., & Datsyshin. A. P. (1976). Raspredeleniye napryazheniy okolo treshchin v plastinakh i obolochkakh [Stress distribution near cracks in plates and shells]. Kiyev: Nauk. dumka, 444 p. (in Russian).

Strelnikova, Ye. A. (2001). Gipersingulyarnyye integral'nyye uravneniya v dvumernykh krayevykh zadachakh dlya uravneniya Laplasa i uravneniy Lame [Hypersingular integral equations in two-dimensional boundary value problems for the Laplace equation and Lame equations]. Dop. NAN Ukrayiny – Reports of the National Academy of Sciences of Ukraine, no 3. pp. 27–31 (in Russian).

Kantor, B. Ya. & Strelnikova, Ye. A. (2005). Gipersingulyarnyye integralnyye uravneniya v zadachakh mekhaniki sploshnoy sredy [Hypersingular integral equations in problems of continuum mechanics].Kharkov: Novoye slovo, 252 p. (in Russian).

Gnitko, V., Naumemko, Y., & Strelnikova, E. (2017). Low frequency sloshing analysis of cylindrical containers with flat аnd conical baffles. Intern. J. Appl. Mech. and Eng., vol. 22, iss. 4, pp. 867–881. https://doi.org/10.1515/ijame-2017-0056.

Peris, P. & Erdogan, F. (1987). Kriterii ustalostnogo rasprostraneniya treshchin [Criteria for the fatigue propagation of cracks]. Tekhn. mekhanika. Ser. D – Tech. Mechanics. Ser. D, no. 4, pp. 60–68 (in Russian).

Strelnikova, Ye. A., Sirota, I.G., Linnik, A. V., Kalembet, L. A, Zarkhina, V. N., & Zaydenvarg, O. L. (2017). Veroyatnostnaya otsenka dolgovechnosti vala gidroturbiny pri nalichii treshchin. Problemy mashinostroyeniya [Probabilistic assessment of the durability of a turbine shaft in the presence of cracks]. Problemy Mashinostroyeniya – Journal of Mechanical Engineering, vol. 20, no 1, pp. 28–35 (in Russian). https://doi.org/10.15407/pmach2017.01.028.

Berendeyev, N. N. (2006). Primeneniye sistemy ANSYS k otsenke ustalostnoy dolgovechnosti [Application of the ANSYS system to the assessment of fatigue life]. Nizhniy Novgorod: Nizhegorod. un-t im. N. I. Lobachevskogo, 84 p. (in Russian).

Загрузки

Опубликован

2020-03-21

Выпуск

Раздел

Динамика и прочность машин