Nonlinear deformation of a two-layered planar curvilinear system

Authors

  • Н. И. Ободан Dnipropetrovsk National University, Ukraine
  • Н. А. Гук Dnipropetrovsk National University, Ukraine
  • Н. Л. Козакова Dnipropetrovsk National University, Ukraine

Keywords:

contact problem, system’s stability, layer’s stability, layer’s separation, friction

Abstract

Nonlinear behavior of a two-layer curved system is investigated. The system of layers is exposed distributed load on surface and disturbances force. The force is applied to the lower layer. At the boundary where the layers are separated, in the contact zone, boundary conditions corresponding to the clutch area slipping and separation are possible. The method of solution is based on the variation formulation of the boundary value problem using characteristic functions. For the solving of the problem the finite element approximation is used. Numerical analysis of non-linear stress-strain state and stability of the upper layer depending on the height of the bottom layer, the angle model, the coefficient of friction and the relative stiffness of the layers, was produced. Analysis of the behavior of a two-layer system showed that at a certain ratio of the thickness of the layers and the values of the existing load, the deformation in the presence of slip, contact, and separation zones is possible. Moreover, the existence of this behavior depends on the system parameters and can be found in series calculations with load change from zero to the final value. Possibility and characteristics the loss of stability of the layer and the entire system have been found, their relationship with parameters of the system are investigated.

Author Biographies

Н. И. Ободан, Dnipropetrovsk National University

Doctor of Technical Sciences

Н. А. Гук, Dnipropetrovsk National University

Doctor of Physical and Mathematical Sciences

References

Guz, A. N. (2014). O postroyenii osnov mekhaniki razrusheniya materialov pri szhatii vdol treshchin [On the construction of the foundations of fracture mechanics of materials under compression along fractures (review)]. Prikladnaja Mehanika – Applied mechanics, Vol. 50, 1, 5 – 88 [in Ukraine].

Liu, P. F., & Islam, M.M. (2013). A nonlinear cohesive model for mixed - mod delamination of composites laminates. Composite Structure, Iss 106. 47 – 56.

Chernyakin, S.A., & Skvortsov, Y.V. (2014). Analiz rosta rassloyeniy v kompozitnykh konstruktsiyakh [Analysis bundles growth in composite structures]. Vestnik Sibirskogo gos. ajerokosmicheskogo universitetata im. akad. Reshetneva – Bulletin of the Siberian state Aerospace University. Acad. Reshetnev, 4(56), 249 – 258 [in Russian].

Parcevskij, V. V. (2003). Rassloenie v polimernyh kompozitah (obzor) [Stratification in polymer composites (review)]. Izvestija RAN. Mehanika tverdogo tela – Mechanics of solids, 5, 62 – 94 [in Russian].

Akbarov, S. D. (2012). Stability Loss and Buckling Delаmination. Berlin: Springer.

Fedorova, V. S., & Lovcov A. D. (2013). Vzaimodejstvie gofrirovannoj metallicheskoj truby s uprugoj sredoj posredstvom trenija Kulona [Interaction of a corrugated metal pipe with an elastic medium by means of Coulomb friction].

Uchenye zametki Tihookeanskogo gosudarstvennogo universitetа – Scholarly notes Pacific State University. Vol. 4, 4, 1662 – 1669 [in Russian].

Jun, L., Lui, X. Y., Nan, Y. Y. & Xuefeng, Y. (2016). Numerical and experimental analisis of delamination in the T-stiffeer integrated composite structure. Mechanics of Advanced Materials and Structures. Vol. 23(10), 1188 – 1196.

Lukashevich, A. A., & Rozin L. A. (2013). O reshenii kontaktnyh zadach stroitel'noj mehaniki s odnostoronnimi svjazjami i treniem metodom poshagovogo analiza [On the solution of contact problems of structural mechanics with one-sided constraints and friction by the step-by-step method]. Inzhenerno-stroitelnyi zhurnal – Engineering and construction magazine, 1, 75 – 81 [in Russian].

Slobodyan, B. S., Lyashenko, B.A. , Malanchuk, N.I., Marchuk, V.E. & Martynyak, R.M. (2016). Modeling of Contact Interaction of Periodically Textured Bodies with Regard for Frictional Slip. Jurnal of Math.Sciences. Vol. 215, iss. 1, 110 – 120.

Zernin, M. B., Babin, A. P., Mishin, A. V. & Burak, V. Ju. (2007). Modelirovanie kontaktnogo vzaimodejstvija s ispol'zovaniem polozhenij mehaniki «kontaktnoj psevdosredy» [Simulation of contact interaction using the "pseudo environment" mechanics]. Vestnik Brjanskogo tehnicheskogo universitetata – Bulletin of the Bryansk Technical University , 4(16), 62 – 73 [in Russian].

Aleksandrov, V. M., & Vorovich, I. I. (2001). Mehanika kontaktnyh vzaimodejstvij [Mechanics of Contact Interactions]. Moscow: Nauka [in Russian].

Novozhilov, V. V. (1958). Teorija uprugosti [Theory of elasticity]. Leningrad: Sudpromgiz [in Russian].

Bathe, K., & Wilson, E. L. (1985). Chislennii metod v konechno-elementnom analize [Numerical method in finite element analysis]. Moscow: Nauka [in Russian].

Obodan, N. I., Lebedeyev, O.G. & Gromov, V.A. (2013). Nonlinear behaviour and stability of thin-walled shells. N.-Y.: Springer.

Dinnik, A. N., (1946). Ustoychivost arok [Stability of arches]. Leningrad: OGIZ [in Russian].

Published

2017-10-31

Issue

Section

Dynamics and Strength of Machines