Steam Turbine Low Pressure Cylinder Last Stage by the Blades Spatial Profiling
Keywords:
spatial profiling, numerical modeling, spatial flow, gas-dynamic efficiency, steam turbine, last stageAbstract
The paper presents an option of the steam condensing turbine K-325-23.5 (K-300 series) low pressure cylinder flow part improvement due to the last stage modernization. The K-325-23.5 turbine is designed to replace the outdated K-300 series turbines, which together with the K-200 series turbines form the basis of Ukraine's thermal energy. In the modernized flow part, new last stage guide apparatus blades with a complex circular lean near the hub are used. The purpose of the modernization was to increase the low-pressure cylinder efficiency in the "bad" condenser vacuum to ensure that it did not "decrease" its efficiency at rated operating modes. The modernized low-pressure cylinder flow part is developed with the usage of modern methods of the viscous three-dimensional flow calculation based on the numerical integration of the Reynolds-averaged Navier-Stoks equations. For the turbulent effects, a two-parameter differential SST Menter turbulence model is applied, and for the hydraulic fluid real properties, the IAPWS-95 state equation is used. To construct the axial blades three-dimensional geometry, the original method, the initial data for which was the limited number of parameterized quantities, was used. The applied methods of gas-dynamic calculations and design of flow turbomachines are implemented in the IPMFlow software package, which is the development of the FlowER and FlowER-U software packages. The researched low-pressure cylinder flow part is limited by the last two stages (4th and 5th). A difference grid with a total element volume of more than 3 million is used to construct the calculation area. The research examined more than 20 options of the last stage stator blades. In the modernized flow part of the low-pressure cylinder last stage at rated operating mode, the gain of the efficiency coefficient (efficiency) is 0.9% and power – 0.61 MW. In the mode of "bad" condenser vacuum (with high pressure) a significant increase is achieved: efficiency – by 11.5%, power increased by almost 2 MW.References
Petinrin, J. O. & Shaaban, M. (2012). Overcoming challenges of renewable energy on future smart grid. Telkomnika, vol. 10, no. 2, pp. 229–234. https://doi.org/10.12928/telkomnika.v10i2.781.
(2017). Enerhetychna stratehiia Ukrainy na period do 2035 roku "Bezpeka, enerhoefektyvnist, konkurentospro-mozhnist" [Ukraine's energy strategy for the period up to 2035 "Security, energy efficiency, competitiveness"]: Order of the Cabinet of Ministers of Ukraine dated August 18, 2017 No. 605-p., 66 p. (in Ukrainian).
Shcheglyayev, A. V. (1993). Parovyye turbiny. Teoriya teplovogo protsessa i konstruktsii turbin [Steam turbines. Theory of the thermal process and turbine design].Moscow: Energoatomizdat, 416 p. (in Russian).
Denton, J. D. (1993). Learning flow physics from turbomachinery flow calculations by Dvorak, R. & Kvapilova, J. (Eds.). Proc. of the Int. Symp. on Experimental and Computational Aerothermodynamics of Internal Flows.Prague: SCMP Publication, pp. 23–51.
ANSYS Fluent for CFD simulations. ANSYS: Official site, 2018. URL: http://www.ansys.com/Products/Fluids/ANSYS-Fluent.
NUMECA Tubomachinery solution for CFD simulations and optimization. NUMECA international: Official site, 2020. URL: http://www.numeca.com/en_eu/turbomachinery.
Rusanov, A., Rusanov, R., & Lampart, P. (2015). Designing and updating the flow part of axial and radial-axial turbines through mathematical modeling. Open Eng. (formerly Central European J. Eng.), vol. 5, iss. 1, pp. 399–410. https://doi.org/10.1515/eng2015-0047.
Yangozov, A. & Lazarovski, N. (2009). Vliyaniye geometricheskoy formy soplovogo apparata na effektivnost preobrazovaniya energii v stupenyakh parovykh turbin [Influence of the geometric shape of the nozzle apparatus on the efficiency of energy conversion in the steps of steam turbines]. Ansys Advantage Rus, no. 11, pp. 29–34 (in Russian).
D’Ippolito, G., Dossena, V., & Mora, A. (2011). The Influence of blade lean on straight and annular turbine cascade flow field. ASME J. Turbomachinery, vol. 133 (1), no. 011013, 9 p. https://doi.org/10.1115/1.4000536.
Rusanov, A. V. & Yershov, S. V. (2008). Matematicheskoye modelirovaniye nestatsionarnykh gazodinamicheskikh protsessov v protochnykh chastyakh turbomashin [Mathematical modeling of unsteady gas-dynamic processes in flowing parts of turbomachines].Kharkov: A. Podgorny Institute of Mechanical Engineering Problems NAS ofUkraine, 275 p. (in Russian).
Rusanov, A., Shubenko, A., Senetskyi, O., Babenko, O., & Rusanov, R. (2019). Healting modes and design optimization of cogeneration steam turbines of powerful units of combined heat and power plant. Energetika, vol. 65, no. 1, pp. 39–50. https://doi.org/10.6001/energetika.v65i1.3974.
Lampart, P. & Yershov, S. (2003). Direct constrained computational fluid dynamics based optimization of three-dimensional blading for the exit stage of a large power steam turbine. Transactions of ASME. J. Eng. for Gas Turbines and Power, vol. 125, no. 1, pp. 385–390. https://doi.org/10.1115/1.1520157.
IAPWS-95. Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. IAPWS-95: Official site, 2019. URL: http://www.iapws.org.
Rusanow, A. V., Lampart, P., Pashchenko, N. V., & Rusanov, R. A. (2016). Modelling 3D steam turbine flow using thermodynamic properties of steam IAPWS-95. Polish Maritime Research, vol. 23, no. 1, pp. 61–67. https://doi.org/10.1515/pomr-2016-0009.
Yershov, S., Rusanov, A., Gardzilewicz, A., & Lampart, P. (1999). Calculations of 3D viscous compressible turbomachinery flows. Proc. 2nd Symp. on Comp. Technologies for Fluid/Thermal/Chemical Systems with Industrial Applications, ASME PVP Division Conf., 1–5 August 1999, Boston, USA, PVP, vol. 397 (2), pp. 143–154.
Menter, F. R. (1994). Two-equation eddy viscosity turbulence models for engineering applications. AIAA J., vol. 32, no. 8, pp. 1598–1605. https://doi.org/10.2514/3.12149.
Rusanov, A. V. & Pashchenko N. V. (2009). Aerodinamicheskoye sovershenstvovaniye tsilindra nizkogo davleniya parovoy turbiny moshchnostyu 200 MVt [Aerodynamic improvement of a low-pressure cylinder of a 200 MW steam turbine]. Problemy mashinostroyeniya – Journal of Mechanical Engineering, vol. 12, no. 2, pp. 7–15 (in Russian).
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Andrii V. Rusanov, Viktor L. Shvetsov, Svitlana V. Alyokhina, Natalia V. Pashchenko, Roman A. Rusanov, Mykhailo H. Ishchenko, Liubov O. Slaston, Riza B. Sherfedinov
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
All authors agree with the following conditions:
- The authors reserve the right to claim authorship of their work and transfer to the journal the right of first publication of the work under the license agreement (the agreement).
- Authors have a right to conclude independently additional agreement on non-exclusive spreading the work in the form in which it was published by the jpurnal (for example, to place the work in institution repository or to publish as a part of a monograph), providing a link to the first publication of the work in this journal.
- Journal policy allows authors to place the manuscript in the Internet (for example, in the institution repository or on a personal web sites) both before its submission to the editorial board and during its editorial processing, as this ensures the productive scientific discussion and impact positively on the efficiency and dynamics of citation of published work (see The Effect of Open Access).