Non-stationary Response of a Carbon Nanotube-reinforced Composite Conical Shell
Keywords:
conical shell, pulsed load, non-stationary process, nanocomposite materialAbstract
This paper is devoted to the development of a method for the analysis of the non-stationary deformation of a carbon nanotube-reinforced composite shell under pulsed loading. The development of innovative manufacturing technologies has led to the emergence of new materials that have high potential for use in the aerospace industry. In particular, these include carbon nanotube-reinforced materials, or so-called nanocomposites. These materials demonstrate high strength and rigidity in combination with low weight, which is especially important when designing components of rocket and aircraft structures: fairings, fuel tanks, engines. At the same time, the behavior of structural elements under typical environmental influences requires additional studies due to the anisotropic and functional-gradient properties of materials. The determination of the mechanical properties of a nanocomposite is a known difficulty due to its anisotropic nature. There are various approaches to solving this problem. The simplest and at the same time well-proven one is the modified mixing rule, which is used in the paper. Equations of motion of the conical shell under the action of shock loading are obtained. To derive the equations of motion of the shell, a high-order theory is used that takes into account shifts and rotational inertia. To analyze the non-stationary dynamics of the shell, its free vibrations are analyzed. The analysis results are highly accurate compared to the finite element calculation carried out in the ANSYS software suite. A method is proposed for analyzing the dynamical response of the shell under the action of impact loading, which is based on the eigenvibration analysis of structures. Time dependencies of adapter deformations are obtained for the cases of actuation of two and four symmetrically arranged pyrodevices. The results of the analysis of the non-stationary dynamics of the adapter were compared with the finite element analysis results.References
Seidel, G. D. & Lagoudas, D. C. (2006). Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mechanics of Materials, vol. 38, iss. 8–10, pp. 884–907. https://doi.org/10.1016/j.mechmat.2005.06.029.
Liu, Y. J. & Chen, X. L. (2003). Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element. Mechanics of Materials, vol. 35, iss. 1–2, pp. 69–81. https://doi.org/10.1016/S0167-6636(02)00200-4.
Odegard, G. M., Gates, T. S., Wise, K. E., Park, C., & Siochi, E. J. (2003). Constitutive modeling of nanotube–reinforced polymer composites. Composites Science and Technology, vol. 63, iss. 11, pp. 1671–1687. https://doi.org/10.1016/S0266-3538(03)00063-0.
Allaoui, A., Bai, S., Cheng, H. M., & Bai, J. B. (2002). Mechanical and electrical properties of a MWNT/epoxy composite. Composites Science and Technology, vol. 62, iss. 15, pp. 1993–1998. https://doi.org/10.1016/S0266-3538(02)00129-X.
Kanagaraj, S., Varanda, F. R., Zhil’tsova, T. V., Oliveira, M. S. A., & Simoes, J. A. O. (2007). Mechanical properties of high density polyethylene/carbon nanotube composites. Composites Science and Technology, vol. 67, iss. 15–16, pp. 3071–3077. https://doi.org/10.1016/j.compscitech.2007.04.024.
Nejati, M., Asanjarani, A., Dimitri, R., Tornabene, F. (2017). Static and free vibration analysis of functionally graded conical shells reinforced by carbon nanotubes. International Journal of Mechanical Sciences, vol. 130, pp. 383–398. https://doi.org/10.1016/j.ijmecsci.2017.06.024.
Hu, H., Onyebueke, L., & Abatan, A. (2010). Characterizing and modeling mechanical properties of nanocomposites. Review and evaluation. Journal of Minerals & Materials Characterization & Engineering, vol. 9, no. 4, pp. 275–319. https://doi.org/10.4236/jmmce.2010.94022.
Mehrabadi, S. J. & Aragh, B. S. (2014). Stress analysis of functionally graded open cylindrical shell reinforced by agglomerated carbon nanotubes. Thin-Walled Structures, vol. 80, pp. 130–141. https://doi.org/10.1016/j.tws.2014.02.016.
Zhang, L. W., Lei, Z. X., Liew, K. M., & Yu, J. L. (2014). Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels. Composite Structures, vol. 111, pp. 205–212. https://doi.org/10.1016/j.compstruct.2013.12.035.
Song, Z. G., Zhang, L. W., & Liew, K. M. (2016). Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments. International Journal of Mechanical Sciences, vol. 115–116, pp. 339–347. https://doi.org/10.1016/j.ijmecsci.2016.06.020.
Sobhaniaragh, B., Batra, R. C., Mansur, W. J., & Peters, F. C. (2017). Thermal response of ceramic matrix nanocomposite cylindrical shells using Eshelby-Mori-Tanaka homogenization scheme. Composites Part B: Engineering, vol. 118, pp. 41–53. https://doi.org/10.1016/j.compositesb.2017.02.032.
Yaser, K., Rossana, D., & Francesco, T. (2018). Free vibration of FG-CNT reinforced composite skew cylindrical shells using the Chebyshev-Ritz formulation. Composites Part B: Engineering, vol. 147, pp. 169–177. https://doi.org/10.1016/j.compositesb.2018.04.028.
Lei, Z. X., Liew, K. M., & Yu, J. L. (2013). Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment. Composite Structures, vol. 106, pp. 128–138. https://doi.org/10.1016/j.compstruct.2013.06.003.
Lei, Z. X., Zhang, L. W., & Liew, K. M. (2015). Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates. International Journal of Mechanical Sciences, vol. 99, pp. 208–217. https://doi.org/10.1016/j.ijmecsci.2015.05.014.
García-Macías, E., Rodríguez-Tembleque, L., & Sáez, A. (2018). Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates. Composite Structures, vol. 186, pp. 123–138. https://doi.org/10.1016/j.compstruct.2017.11.076.
Wang, Q., Cui, X., Qin, B., & Liang, Q. (2017). Vibration analysis of the functionally graded carbon nanotube reinforced composite shallow shells with arbitrary boundary conditions. Composite Structures, vol. 182, pp. 364–379. https://doi.org/10.1016/j.compstruct.2017.09.043.
Wang, A., Chen, H., Hao, Y., & Zhang, Y. (2018). Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets. Results in Physics, vol. 9, pp. 550–559. https://doi.org/10.1016/j.rinp.2018.02.062.
Moradi-Dastjerdi, R., Foroutan, M., & Pourasghar, A. (2013). Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method. Materials and Design, vol. 44, pp. 256–266. https://doi.org/10.1016/j.matdes.2012.07.069.
Shen, H.-S. (2009). Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures, vol. 91, iss. 1, pp. 9–19. https://doi.org/10.1016/j.compstruct.2009.04.026.
Wang, Q., Qin, B., Shi, D., & Liang, Q. (2017). A semi-analytical method for vibration analysis of functionally graded carbon nanotube reinforced composite doubly-curved panels and shells of revolution. Composite Structures, vol. 174, pp. 87–109. https://doi.org/10.1016/j.compstruct.2017.04.038.
Reddy, J. N. (1984). A simple higher-order theory for laminated composite plates. ASME Journal of Applied Mechanics, vol. 51, iss. 4, pp. 745–752. https://doi.org/10.1115/1.3167719.
Reddy, J. N. (1984). A refined nonlinear theory of plates with transverse shear deformation. International Journal of Solids and Structures, vol. 20, iss. 9–10, pp. 881–896. https://doi.org/10.1016/0020-7683(84)90056-8.
Amabili, M. (2010). A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells. International Journal of Non-Linear Mechanics, vol. 45, iss. 4, pp. 409–418. https://doi.org/10.1016/j.ijnonlinmec.2009.12.013.
Meirovitch, L. (1986). Elements of vibration analysis. New York: McGraw-Hill Publishing Company, 560 p.
Avramov, K., Chernobryvko, M., Uspensky, B., Seitkazenova, K., & Myrzaliyev, D. (2019). Self-sustained vibrations of functionally graded carbon nanotubes reinforced composite cylindrical shell in supersonic flow. Nonlinear Dynamics, vol. 98, no. 3, pp. 1853–1876. https://doi.org/10.1007/s11071-019-05292-z.
Chernobryvko, M. V., Avramov, K. V., Romanenko, V. N., Batutina, T. J., & Tonkonogenko, A. M. (2014). Free linear vibrations of thin axisymmetric parabolic shells. Meccanica, vol. 49, no. 8, pp. 2839–2845. https://doi.org/10.1007/s11012-014-0027-6.
Gantmakher, F. R. (1966). Lektsii po analiticheskoy mekhanike [Lectures on analytical mechanics]. Moscow: Nauka, 300 p. (in Russian).
Downloads
Published
Issue
Section
License
Copyright (c) 2020 Kostiantyn V. Avramov, Borys V. Uspenskyi, Nataliia H. Sakhno, Iryna V. Biblik
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
All authors agree with the following conditions:
- The authors reserve the right to claim authorship of their work and transfer to the journal the right of first publication of the work under the license agreement (the agreement).
- Authors have a right to conclude independently additional agreement on non-exclusive spreading the work in the form in which it was published by the jpurnal (for example, to place the work in institution repository or to publish as a part of a monograph), providing a link to the first publication of the work in this journal.
- Journal policy allows authors to place the manuscript in the Internet (for example, in the institution repository or on a personal web sites) both before its submission to the editorial board and during its editorial processing, as this ensures the productive scientific discussion and impact positively on the efficiency and dynamics of citation of published work (see The Effect of Open Access).