Multicriteria Optimization of Stochastic Robust Control of the Tracking System
Abstract
A multicriteria optimization of stochastic robust control with two degrees of freedom of a tracking system with anisotropic regulators has been developed to increase accuracy and reduce sensitivity to uncertain object parameters. Such objects are located on a moving base, on which sensors for angles, angular velocities and angular accelerations are installed. Improvements in the accuracy of control with two degrees of freedom include closed-loop feedback control and open-loop feedback control through the use of reference and perturbation effects. The multicriteria optimization of the stochastic robust control tracking system with two degrees of freedom with anisotropic controllers is reduced to the iterative solution of a system of four coupled Riccati equations, the Lyapunov equation, and the determination of the anisotropy norm of the system by an expression of a special form, which is numerically solved using the homotopy method, which includes vectorization matrices and iterations according to Newton's method. The objective vector of robust control is calculated in the form of a solution of a vector game, the vector gains of which are direct indicators of the quality that the system should achieve in different modes of its operation. The calculation of the vector gains of this game is related to the simulation of a synthesized system with anisotropic regulators for different modes of operation with different input signals and object parameter values. The solutions of this vector game are calculated on the basis of a set of Pareto-optimal solutions taking into account the binary relations of preferences on the basis of the metaheuristic algorithm of multi-swarm Archimedes optimization. Based on the results of the synthesis of stochastic robust control of a tracking system with two degrees of freedom with anisotropic controllers, it is shown that the use of synthesized controllers made it possible to increase the accuracy of system control, reduce the time of transient processes by 3–5 times, reduce the variance of errors by 2.7 times, and reduce the sensitivity of the system to the change of object parameters compared to typical regulators.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Б. І. Кузнецов, І. В. Бовдуй, О. В. Волошко, Т. Б. Нікітіна, Б. Б. Кобилянський
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
All authors agree with the following conditions:
- The authors reserve the right to claim authorship of their work and transfer to the journal the right of first publication of the work under the license agreement (the agreement).
- Authors have a right to conclude independently additional agreement on non-exclusive spreading the work in the form in which it was published by the jpurnal (for example, to place the work in institution repository or to publish as a part of a monograph), providing a link to the first publication of the work in this journal.
- Journal policy allows authors to place the manuscript in the Internet (for example, in the institution repository or on a personal web sites) both before its submission to the editorial board and during its editorial processing, as this ensures the productive scientific discussion and impact positively on the efficiency and dynamics of citation of published work (see The Effect of Open Access).