Simulation of ion-atom interactions at the corpuscular bombardment of the surface of steel samples

Authors

  • Виталий Викторович Гончаров Institute of Chemical Technology (Rubizhne) Volodymyr Dahl' East Ukrainian National University Str. Lenin, 31, Rubezhnoye, Lugansk region, Ukraine, 93009, Ukraine
  • С. В. Мащенко Institute of Chemical Technology (Rubizhne) Volodymyr Dahl' East Ukrainian National University Str. Lenin, 31, Rubezhnoye, Lugansk region, Ukraine, 93009, Ukraine https://orcid.org/0000-0002-1314-1748
  • А. А. Черный Institute of Chemical Technology (Rubizhne) Volodymyr Dahl' East Ukrainian National University Str. Lenin, 31, Rubezhnoye, Lugansk region, Ukraine, 93009, Ukraine https://orcid.org/0000-0001-8487-6066

Keywords:

ionic implantation, a computer model, implants, neural networks

Abstract

In the paper the problem of modeling of ionic implantation as the technology of influence on the surface properties of materials is solved. On the basis of existing physical models computer program "RIO" is developed. Capabilities of the software allow us to calculate the penetration depth of the ions in the target material, the formation of the deposited film and the sputtering surface. Program "RIO" takes into account the surface microgeometry, that allows to build profiles and to calculate the cross-sectional surface roughness, length of the profile, the average tilt angle, etc. Comparison of the results obtained using this model with the microanalytical data confirmed the accuracy of the developed program. For the purpose of modeling the behavior of the entire surface was investigated possibility of using neural networks. Analysis of micrographs showed high prediction accuracy relief ion-implanted surface modeling method using neural networks. The similarity values of Ra shows that the neural networks reliably reproduce the ratio of the height of the peaks and valleys of the surface. Accumulation of the results increases the accuracy of the simulation, and thus allows to control the textural characteristics of the implants. The results of research shows perspectivities for application of the developed methods for the design of heat exchangers and catalytic devices, precision and tribological pairs, etc.

Author Biographies

Виталий Викторович Гончаров, Institute of Chemical Technology (Rubizhne) Volodymyr Dahl' East Ukrainian National University Str. Lenin, 31, Rubezhnoye, Lugansk region, Ukraine, 93009

Ph.D., Associate Professor

Department of Physics and Technical Mechanics

А. А. Черный, Institute of Chemical Technology (Rubizhne) Volodymyr Dahl' East Ukrainian National University Str. Lenin, 31, Rubezhnoye, Lugansk region, Ukraine, 93009

Candidate of Technical Sciences

References

Begrambekov, L., B. (2001). Modifikatsiya poverkhnosti tverdykh tel pri ionnom i plazmennom vozdeystvii. Moscow, Moskovskiy inzhenerno-fizicheskiy institute: 34.

Val'dner, V., O, et al. (1987). “Vliyaniye nizkoenergeticheskoy implantatsii na mekhanicheskiye svoystva splavov titana i zheleza.” Fizika i khimiya obrabotki materialov 2: 18-24.

Kosterin, K., V. (1995). “Raspyleniye tverdykh tel ionnoy bombardirovkoy: adatomnyye mekhanizmy i vozmozhnaya rol' fononov.” Fizika i khimiya obrabotki materialov 3: 43 48.

Belous, V., A., G. I. Nosov and N.A. Azarenkov (2010). “O vliyanii oblucheniya ionami Ar+ na korrozionnuyu stoykost' metallov i splavov.” Fizicheskaya inzheneriya poverkhnosti 2(8): 161-168.

Vital'skiy, D., V. (2007). Modifikatsiya i ekspluatatsionnyye svoystva poverkhnostey detaley mashin i instrumentov pri ionnoy implantatsii azota: dis. ... kand. tekh. naukTula: 137.

Nikitin, A., A. (1986). “Ionnaya implantatsiya – effektivnyy metod izmeneniya svoystv poverkhnosti metallov i splavov.” Byulleten' Tsentral'nogo nauchno-issledovatel'skogo instituta chermeta 23: 9-18.

Kalin, B., A. (2001). “Radiatsionno-puchkovyye tekhnologii obrabotki konstruktsionnykh materialov.” Fizika i khimiya obrabotki materialov 4: 5-16.

Goncharov, V., V. and V. O. Zazhigalov (2012). Sintez nanorazmernykh sloyev aktivnykh metallov na poverkhnosti fol'gi iz nerzhaveyushchey stali. Tezisy dokladov ÍÍÍ Mezhdunarodnoj nauchnoj konferentsiiNanostrukturnyye,Russia.

Zelenskiy, V., F.,I.M. Neklyudov and T. P. Chernyayeva (1988). Radiatsionnyye defekty i raspukhaniye metallov. Kiyev, Naukova dumka: 296.

Khirvonen, Dzh., K. (1985). Ionnaya implantatsiya.Moscow, Metallurgiya: 285.

Boyko, V.,I., B. Ye. Kadlubovich andI.V. Shamanin (1991). “Vliyaniye defektnosti struktury metallov na profil' raspredeleniya vnedrennykh ionov.” Fizika i khimiya obrabotki materialov 3: 56 61.

Nikonenko, V., A. (2001). Matematicheskoye modelirovaniye tekhnologicheskikh protsessov: Modelirovaniye v srede MathCAD. Praktikum.Moscow, Moskovskiy institut stali i splavov: 48.

Bobyl', A., V. and S. F. Karmanenko (2005). Fiziko-khimicheskiye osnovy tekhnologii poluprovodnikov. Puchkovyye i plazmennyye protsessy v planarnoy tekhnologii: Ucheb. Posobiye. Sankt-Peterburg, Izdatelstvo Politekhnicheskogo universiteta: 113.

Fal'kone, D. (1992). “Teoriya raspyleniya.” Uspekhi fizicheskikh nauk 1(162): 71-117.

Berish, R. (1986). Raspyleniye tverdykh tel ionnoy bombardirovkoy.Moscow, Mir: 488.

Keywell, F. (1955). “Measurements and Collision–Radiation Damage Theory of High-Vacuum Sputtering.” Phys. Rev. 6(97): 1611-1619.

Antonetti, D. et al. (1988). MOP-SBIS. Modelirovaniye elementov i tekhnologicheskikh protsessov.Moscow, Radio i svyaz': 496.

PARTICLE INTERACTIONS WITH MATTER. Web-site James F. Ziegler: http://www.srim.org/SRIM/SRIMLEGL.htm.

Dudognon, J., M. Vayer, A. Pineau and R. Erre (2008). “Grazing incidence X-ray diffraction spectra analysis of expanded austenite for implanted stainless steel.” Surface & Coating Technology 20(202): 5048 – 5054.

Dudognon, J., M. Vayer, A. Pineau and R. Erre (2006). “Modelling of grazing incidence X-ray diffraction spectra from Mo-implanted stainless steel. Comparison with experimental data.” Surface & Coating Technology 200: 5058 – 5066.

Pout, Dzh., K. Tu and Dzh. Meyyer (1982). Tonkiye plenki – vzaimnaya diffuziya i reaktsii.Moscow, Mir: 576.

Khass, G. and R. E. Tun (1968). Fizika tonkikh plenok: sovremennoye sostoyaniye issledovaniy i tekhnicheskiye primeneniya.Moscow, Mir: 331.

Wu, Zhongzhen, Xiubo Tian, Chunzhi Gong, Shiqin Yang and Paul K. Chu. (2013). “Micrograph and structure of CrN films prepared by plasma immersion ion implantation and deposition using HPPMS plasma source.” Surface & Coating Technology 25(229): 210 ‑ 216.

Liu, Hongxi, Qian Xu, Xiaowei Zhang, Chuanqi Wang and Baoyin Tang (2013). “Residual stress analysis of TiN film fabricated by plasma immersion ion implantation and deposition process.” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 15(297): 1 - 6.

Liu, Hongxi, Qian Xu, Chuanqi Wang, Xiaowei Zhang and Baoyin Tang (2013). “Investigating the microstructure and mechanical behaviors of DLC films on AISI52100 bearing steel surface fabricated by plasma immersion ion implantation and deposition.” Surface & Coating Technology 15(228): 159 ‑ 163.

Gwyddion. Free SPM (AFM, SNOM/NSOM, STM, MFM, …) data analysis software: http://gwyddion.net/

Published

2014-12-30

Issue

Section

High technologies in mechanical engineering