Building and research of operator approximation of functions of two variables with preservation of class Cr(R2) for traces of derivatives to a fixed order in the specified line

Authors

  • І. В. Сергієнко Institute of Cybernetics of VM Glushkov of NAS of Ukraine, Ukraine
  • О. М. Литвин Ukrainian Engineering and Pedagogical Academy, Ukraine
  • О. О. Литвин Ukrainian Engineering and Pedagogical Academy, Ukraine
  • О. В. Ткаченко DP SCB "Ivchenko-Progress", Ukraine
  • О. Л. Грицай DP SCB "Ivchenko-Progress", Ukraine

Keywords:

preservation of differentiability class, function traces, the traces of the derivatives on the line, Taylor polynomial in one variable

Abstract

The problem of constructing a function with preservation of differentiability class has very important applications in the theory and practice of solving boundary value problems in which the boundary conditions are expressed by differential operators of the first, second and higher orders. In particular, in the solution of the biharmonic equation, if the boundary conditions are not uniform, the structural method for solving boundary value V. L. Rvachev’s problems this problem is one of the most important. If the first derivative with respect to the normal to the boundary of the region in one or more points is a continuous or once differentiable function of one variable, the existing methods for constructing structures of boundary value problems will be automatically carry these qualities into the domain of integration. At the same time the classical methods of solving boundary value problems continue to monitor the solution inside the domain while preserving infinitely differentiable. In this article construction and research of an operator of approach of functions of 2 variables with preservation of a class Cr(R2) with help these tracks and tracks these derivations of the fixed order on given curve. Development of the methods of the recovery of the functions of two variables with preservation of the class Cr(R2) in the neighborhood curve of the class Cr. The methods using the tracks the functions and tracks these derivations until of the fixed order on given curve

Author Biographies

І. В. Сергієнко, Institute of Cybernetics of VM Glushkov of NAS of Ukraine

NAS of Ukraine

О. М. Литвин, Ukrainian Engineering and Pedagogical Academy

Doctor of Physical and Mathematical Sciences

О. О. Литвин, Ukrainian Engineering and Pedagogical Academy

Candidate of Physical and Mathematical Sciences

О. В. Ткаченко, DP SCB "Ivchenko-Progress"

Candidate of Physical and Mathematical Sciences

References

Vidnovlennya funktsiy dvoh zminnyh iz zberezhennyam klasu Cr(R2) za dopomogoyu ih slidiv ta slidiv ih pohidnyh do fiksovanogo poryadku na zadaniy linii / I. V. Sergienko, O. M. Lytvyn, O. O. Lytvyn, O. V. Tkachenko, O. L. Gritsay // Dop. NAN Ukrainy. 2014. №2. – S. 50–55. (in Ukrainian)

Sergienko, I. V. Sistemnyi analiz / I. V. Sergienko, V. S. Dejneka. – Kiev: Nauk. dumka, 2013.– 500 s. (in Russian)

Sergienko, I. V. Elementy zagal’noi teorii optymal’nyh algorytmiv I sumizhni pytannya / I. V. Sergienko, V. K. Zadiraka, О. М. Lytvyn – К.: Nauk. dumka, 2012. – 404 s.

Tihonov, A. N. Uravneniya matematicheskoi fiziki / А. N. Tihonov, А. А. Samarskiy – М.: Nauka, 1966. – 724 s. (in Russian)

Kvasov, B. I. Metody izogeometricheskoi approksimatsii splaynami / B. I. Kvasov. – М.: Fizmatlit, 2006. – 360 s. (in Russian)

Shilov, G. E. Matematicheskiy analiz. Vtoroy spets. kurs / G. Е. Shilov. – М.: Nauka, 1965. – 327 s. (in Russian)

Nikol’skiy, S.M. Priblizhenie funktsiy mnogih peremennyh I teoremy vlozheniya / S. М. Nikol’skiy. – М.: Nauka, 1969. – 480 s. (in Russian)

Besov, O. V. Integral’nye predstavleniya funktsiy I teoremy vlozheniya / О. V. Besov, V. P. Il’in, S. М. Nikol’skiy – М.: Nauka, 1975. – 480 s. (in Russian)

Stein, I. Singul’arnye integraly I differentsial’nye svoistva funktsiy / I. Stein. – М.: Мir, 1973. – 342 с. (in Russian)

Vladimirov, V. S. Obobschennye funktsii v matematicheskoy fizike / V. S. Vladimirov. – М.: Nauka, 1979. – 318 s. (in Russian)

Hermander, L. Differentsial’nye operatory s postoyannymi koeffitsientami / L. Hermander. – М.: Мir, 1986. – 455 s. (in Russian)

Matematicheskaya entsiklopediya / Pod. red. I. М. Vinogradova: v 5 т. – М.: Sov. entsiklopediya, 1984. – Т.5. – 1215 s. (in Russian)

Lytvyn, О. М. Interpolyatsiya funktsiy ta ih normal’nyh pohidnyh na gladkyh liniyah v Rn / О. М. Lytvyn // Dop. АN URSR. – 1984. – № 7. – S. 15–19. (in Ukrainian)

Lytvyn, О. М. Tochnyi rozvyazok zadachi Koshi dlya rivnyannya / О. М. Lytvyn // Dop. АN URSR. – 1991. – № 3. – S. 12–17. (in Ukrainian)

Lytvyn, О. М. Interfletatsiya funktsiy pry rozvyazuvanni tryvymirnoi zadachi teploprovidnosti: monografiya / О. М. Lytvyn, L. I. Gulik – К.: Nauk. dumka, 2011. – 210 s. (in Ukrainian)

Lytvyn, О. М. Interlinatsiya funktsiy ta deyaki ii zastosuvannya / О. М. Lytvyn – Kharkiv: Оsnova, 2002. – 544 s. (in Ukrainian)

Lytvyn, О. М. Interlinatsiya funktsiy / О. М. Lytvyn – Kharkiv: Оsnova, 1993. – 235 s. (in Ukrainian)

Lytvyn, О. М. Metody obchislen’. Dodatkovi rozdily / О. М. Lytvyn – Кyiv: Nauk. dumka, 2005. – 331 s. (in Ukrainian)

Sergienko, I. V. Matematychne modelyuvannya v kompyuterniy tomografii z vykorystannyam interfletatsii funktsiy / I. V. Sergienko, О. М. Lytvyn, U. І. Pershina // Мonografiya. – Kharkiv, 2008, 160 s. (in Ukrainian)

Optymal’ni algorytmy obchislennya integraliv vid shvydkoostsiluuchyh funktsiy ta ih zastosuvannya: U 2 т. Т. 1. Algorytmy / I. V. Sergienko, V. K. Zadiraka, О. М. Lytvyn, S. S. Мel’nikova, О. P. Nechuyviter. – К.: Nauk. dumka, 2011.– 447 s. (in Ukrainian)

Optymal’ni algorytmy obchislennya integraliv vid shvydkoostsiluuchyh funktsiy ta ih zastosuvannya: U 2 т. Т. 2. Zastosuvannya / I. V. Sergienko, V. K. Zadiraka, О. М. Lytvyn, S. S. Мel’nikova, О. P. Nechuyviter – К.: Nauk. dumka, 2011. – 348 s. (in Ukrainian)

Published

2016-06-16

Issue

Section

Applied mathematics