Construction and research of operators of a Hermite interlineation of functions two variables on system of not intersected lines with preservation of differential class

Authors

  • І. В. Сергієнко V. M. Glushkov Institute of Cybernetics of NAS of Ukraine, Ukraine
  • О. М. Литвин Ukrainian Engineering and Pedagogical Academy, Ukraine
  • О. О. Литвин Ukrainian Engineering and Pedagogical Academy, Ukraine
  • О. В. Ткаченко DP SCB "Ivchenko-Progress", Ukraine
  • О. Л. Грицай DP SCB "Ivchenko-Progress", Ukraine

Keywords:

classes of differentiable, the following functions, traces the derivatives on the line, Hermite interlineation

Abstract

Investigates methods for constructing Hermitian operators interlination recovery of differentiated functions of two variables between the smooth continuous curves that preserve the class of differentiability Cr(R2). To construct these operators are used traces of the interpolated function and its partial derivatives with respect to one variable to a given order. The method of constructing these operators are based on the method first proposed in O. N. Lytvyn and uses a linear combination of the integral operators, allowing to increase the relevant classes of differentiable functions that are built with the following, which are assumed not to have the required class of differentiability. Thus said linear combination belongs to a specific class of differentiability despite the value of the linear combination coefficients. These values are found from the condition that corresponding derivatives of the variable y have the same traces as the approximated function on all M non-intersecting curves. Thus constructed operators retain the same differentiability class r, which owns the approximated function f(x, y) and at the same has the same traces as the approximated function with partial derivatives y with respect to the order N inclusive. In this paper, accepted that the functions describing these curves have continuous derivatives to order r including and those curves do not intersect.

Author Biographies

І. В. Сергієнко, V. M. Glushkov Institute of Cybernetics of NAS of Ukraine

academician of NAS of Ukraine

О. М. Литвин, Ukrainian Engineering and Pedagogical Academy

Doctor of Physical and Mathematical Sciences

О. О. Литвин, Ukrainian Engineering and Pedagogical Academy

PhD

О. В. Ткаченко, DP SCB "Ivchenko-Progress"

PhD

References

Lytvyn, О.М. Interlinatsiya funktsiy ta deyaki ii zastosuvannya. Kharkiv: Оsnova, 544 (2002) (in Ukrainian).

Lytvyn, О.М. Interlinatsiya funktsiy. Kharkiv: Оsnova, 235 (1993) (in Ukrainian).

Sergienko, I.V., Zadiraka V.K., Lytvyn О.М. Elementy zagal’noi teorii optymal’nyh algorytmiv I sumizhni pytannya. К.: Nauk. dumka, 404 (2012) (in Ukrainian).

Lytvyn, O.M., Lytvyn О. О., Tkachenko О. V., Gritsay О. L. Ermitova interlinatsiya funktsiy dvoh zminnyh na zadaniy systemi neperetynnyh liniy iz zberezhennyam klasu Cr(R2). Dopovidi NAN Ukrainy. 7, 53–59. (2014) (in Ukrainian).

Nikol’skiy, S.M. Priblizhenie funktsiy mnogih peremennyh I teoremy vlozheniya. М.: Nauka, 480 (1969) (in Russian).

Besov, O. V., Il’in V. P., Nikol’skiy S. М. Integral’nye predstavleniya funktsiy I teoremy vlozheniya. М.: Nauka. 480 (1975) (in Russian)

Stein, I. Singul’arnye integraly I differentsial’nye svoistva funktsiy. М.: Мir, 342 (1973) (in Russian).

Vladimirov, V. S. Obobschennye funktsii v matematicheskoy fizike. М.: Nauka, 318 (1979) (in Russian).

Hermander, L. Differentsial’nye operatory s postoyannymi koeffitsientami. М.: Мir, 455 (1986) (in Russian).

Tihonov, A. N., Samarskiy А. А. Uravneniya matematicheskoi fiziki. М.: Nauka, 1966, 724 (Samarskiy) (in Russian).

Rvachev, V.L. Teoriya R-funktsiy i nekotorye ee prilozheniya. Kiev: Nauk. dumka, 550 (1982) (in Russian).

Shilov, G. E. Matematicheskiy analiz. Vtoroy spets. kurs. М.: Nauka, 327 (1965) (in Russian).

Kvasov, B.I. Metody izogeometricheskoi approksimatsii splaynami, М.: Fizmatlit, 360 (2006) (in Russian).

Matematicheskaya entsiklopediya. М.: Sov. Entsiklopediya, 1215 (1984) (in Russian).

Lytvyn, О.М. Interpolyatsiya funktsiy ta ih normal’nyh pohidnyh na gladkyh liniyah v Rn. Dop. АN URSR. 7, 15–19 (1984) (in Ukrainian).

Lytvyn, О.М. Tochnyi rozvyazok zadachi Koshi dlya rivnyannya . Dop. АN URSR. 3, 12–17 (1991) (in Ukrainian).

Lytvyn, О.М. Pobudova funktsiy n zminnyh iz zadanymy normal’nymy pohidnymy na Rm (1 £ m £ n – 1) iz zberezhennyam klasu Cr(Rn). Dop. АN URSR. ser. А. 5, 13–17 (1987) (in Ukrainian).

Sergienko, І. V., Lytvyn О. М. , Lytvyn О. О., Tkachenko О. V., Gritsay О. L. Vidnovlennya funktsiy dvoh zminnyh iz zberezhennyam klasu Cr(R2) za dopomogoyu ih slidiv ta slidiv ih pohidnyh do fiksovanogo poryadku na zadaniy linii. Dop. NAN Ukrainy. 2, 50–55 (2014) (in Ukrainian).

Sergienko, І. V., Lytvyn О. М., Lytvyn О. О., Tkachenko О. V., Gritsay О. L. Pobudova ta doslidzhennya operatora nablyzhennya funktsiy dvoh zminnyh iz zberezhennyam klasu dyferentsiyovnosti za slidamy ih pohidnyh do fiksovanogo poryadku na zadaniy linii. Problemy mashinostroeniya. 19 (2), 50–57 (2016) (in Ukrainian).

Published

2016-09-30

Issue

Section

Applied mathematics