Аналіз напруженого стану шару з двома циліндричними пружними включеннями й мішаними граничними умовами

Автор(и)

  • В. Ю. Мірошніков Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський авіаційний інститут» (61070, Україна, м. Харків, вул. Чкалова, 17), Україна https://orcid.org/0000-0002-9491-0181
  • О. Б. Савін Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський авіаційний інститут» (61070, Україна, м. Харків, вул. Чкалова, 17), Україна https://orcid.org/0000-0002-2664-0255
  • М. М. Гребенніков Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський авіаційний інститут» (61070, Україна, м. Харків, вул. Чкалова, 17), Україна https://orcid.org/0000-0001-7648-3027
  • О. А. Погребняк Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський авіаційний інститут» (61070, Україна, м. Харків, вул. Чкалова, 17), Україна https://orcid.org/0000-0002-0912-8823

Анотація

Досліджується просторова задача теорії пружності для шару з двома нескінченними круговими суцільними циліндричними включеннями, паралельними між собою й межами шару. Шар і включення є однорідними, ізотропними матеріалами, фізичні характеристики цих тіл відмінні одна від одної. Кругові циліндричні пружні включення жорстко спряжені з шаром. На верхній межі шару задана просторова функція напружень, на нижній – переміщень. Необхідно визначити напружено-деформований стан композитного тіла. При цьому розв’язання задачі базується на узагальненому методі Фур’є, де використовуються особливі формули переходу між базисними розв’язками рівняння Ламе у різних системах координат. Таким чином, шар розглядається в декартовій системі координат, включення – у локальних циліндричних. Задовольняючи граничним умовам й умовам спряження, отримано системи нескінченних інтегро-алгебраїчних рівнянь, які в подальшому зведені до лінійних алгебраїчних. Нескінченна система розв’язується методом редукції. Після знаходження невідомих можна визначити напруження в будь-якій точці пружного композиційного тіла. У чисельних дослідженнях проведено порівняльний аналіз напруженого стану на поверхнях включень за різних відстаней між ними. Аналіз показав, що при зближенні включень напружений стан у шарі практично не змінюється. Однак спостерігається суттєва його зміна в тілах включень. Так, при щільному армуванні ((R+ R2) / L > 0,5) необхідно враховувати відстані між армуючими волокнами. При значеннях напружень від 0 до 1 і порядку системи рівнянь m=10 точність виконання граничних умов склала 10-4. При збільшенні порядку системи точність виконання граничних умов зростатиме. Представлене аналітико-чисельне розв’язання може використовуватися для високоточного визначення напружено-деформованого стану представленого типу задач, а також як еталонне для задач, що базуються на чисельних методах.

Біографії авторів

В. Ю. Мірошніков, Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський авіаційний інститут» (61070, Україна, м. Харків, вул. Чкалова, 17)

Доктор технічних наук

О. Б. Савін, Національний аерокосмічний університет ім. М. Є. Жуковського «Харківський авіаційний інститут» (61070, Україна, м. Харків, вул. Чкалова, 17)

Кандидат технічних наук

##submission.downloads##

Опубліковано

2022-07-28

Номер

Розділ

Динаміка і міцність машин