HEAT EXCHANGERS DESIGN FOR THE REGASIFICATION SYSTEM OF THE LNG TERMINAL WITH ANNUAL CAPACITY OF 5 BILLION M3

Authors

  • М. О. Чеплюха Admiral Makarov National University of Shipbuilding, Ukraine
  • М. С. Бондаренко Admiral Makarov National University of Shipbuilding,
  • Д. С. Мінчев Admiral Makarov National University of Shipbuilding,
  • А. В. Нагірний Admiral Makarov National University of Shipbuilding,

DOI:

https://doi.org/10.15673/0453-8307.5/2014.28703

Keywords:

Liquefied natural gas – Regasification – Reboiler – Superheater – Seawater heat.

Abstract

The paper is devoted to the important scientific and technical problem of development of the modern and high-efficient storage and regasification liquefied natural gas terminal. The design, calculated performance and mass-dimensional parameters of heat exchangers and pumping equipment for the regasification system of the LNG terminal with annual capacity of 5 billion m3 at the northern Black Sea coast conditions are presented. The regasification system provides evaporation and superheating of liquefied natural gas to meet the given parameters of evaporated gas at the inlet of the main pipeline. The composition of the system includes heat exchangers: reboilers to evaporate the liquefied gas and superheaters to get the necessary temperature of evaporated gas. The seawater is suggested as the source of heat for evaporation and superheating of the natural gas, with the pumping station is to be used for pumping the water through heat exchangers. To make a sufficient investigation the change in seawater temperature throughout the season is had to be taken into account. Peculiarities of the annual maintenance of reboilers, superheaters and pumps due to change in the seawater temperature have been shown in the paper. A shell-and-tube heat exchanger type with multiple reverse flow of LNG is suggested to use for the reboiler. The superheater is designed as the finned-tube heat exchanger with multiple cross-flow of seawater. The set of limits was applied to the calculations among them are: the temperature drop of seawater on the heat exchanger is less then 3 °C (±1) and the maximum permissible speed of seawater in heat exchanger is 2 m/s. According to the calculations, the necessary amount of reboilers and superheaters is 10 items each type with the dimensions of reboiler about 1,25×1,4×4,1 m and superheater about 3,6×1,55×1,55 m. Seawater flow adjustment during the year, corresponding to its temperature, permits to meat ecological limits and to provide the regasification of the daily capacity of liquefied natural gas at the pressure of 4 MPa and outlet temperature greater than 2 ºC as it is shown by dint of mathematical simulation. The range of seawater flow is 6700…9350 kg/s, the necessary pumping station power – 4300 kWt

References

REFERENCES

BP Statistical Review of World Energy June 2013 [Electronic resource]/ http://www. bp.com/content/ dam/bp-country/es_es/statistical_ review_of_world_energy_2013.pdf

World LNG plant & terminal [Electronic resource]/ http://www.globall ng.info.com

NatsIonalniy proekt «LNG UkraYina» - stvo-rennya Infrastrukturi postachannya skraplenogo gazu v UkraYinu» [Electronic resource]/ http://www.ukr project.gov.ua/node/27

AES Gravelines stanet istochnikom tepla dlya terminala regazifikatsii SPG [Electronic re-source]/ http://www. atominfo.ru/newsc/l0672.htm

Integration of a new CCGT plant and an existing LNG terminal at Barcelona port [Electronic resource] / http://www.ivt.ntnu.no/ept/fag/ tep4215/innhold/LNGConferences/2005/SDS_ TIF/050165.pdf

Evolution of an LNG Terminal: Senboku Terminal of Osaka Gas [Electronic resource]/ http://members.igu.org/html/wgc2006/pdf/paper/add11362.pdf

LNG IMPORT TERMINAL PROFILE: Bahia de Bizkaia Gas, Bilbao, Spain [Electronic resource]/ http://www.member.zeusintel.com ZLNGRshow_image.aspxid=1070

Moshentsev Yu.L. Teploobmennyie apparatyi DVS: Uchebnoe posobie [Tekst]/ Yu.L. Moshentsev. – Nikolaev: NUK, 2006. – 330s.

Keys V.M. Kompaktnyie teploobmenniki [Tekst]/ V.M. Keys, A.L. London, per. s angl. pod red. Yu.V. Petrovskogo.– M., Energiya, 1967.– 224 s.

Zagoruchenko V.A. Teplofizicheskie svoystva gazoobraznogo i zhidkogo metana [Tekst]/ V.A. Zagoruchenko, A.M. Zhuravlev. – M.: Izdate-lstvo komiteta standartov, mer i izmeritel-nyih priborov, 1969. – 236 s.

Spravochnik po teploobmennikam: V 2-h t. T 2 [Tekst]/ Per. s angl. pod red. O.G. Martyinenko i dr. – M.: Energoatomizdat, 1987. – 352 s.

Uong H. Osnovnyie formulyi i dannyie po tep-loobmenu dlya inzhenerov: Spravochnik [Tekst]/ H. Uong, per. S angl. V.V. Yakovleva. – M.: Atomizdat, 1979. – 216 s.

Iskiv E.I. Podvodnyiy mir Chernogo morya [Tekst]/ E.I. Iskiv.– Simferopol.:Tavriya,2002.– 64 s.

Idelchik I.E. Spravochnik po gidravli-cheskim soprotivleniyam [Tekst]/ Pod red. M. O. Shteynberga. – M.: Mashinostroenie, 1992. – 672 s.

Літературне посилання

ЛІТЕРАТУРА

BP Statistical Review of World Energy June 2013 [Електронний ресурс]/ http://www. bp.com/content/ dam/bp-country/es_es/statistical_ review_of_world_energy_2013.pdf

World LNG plant & terminal [Електронний ре-сурс]/ http://www.globall ng.info.com

Національний проект «LNG Україна» - створен-ня інфраструктури постачання скрапленого газу в Україну» [Електронний ресурс]/ http://www.ukr project.gov.ua/node/27

АЭС Gravelines станет источником тепла для терминала регазификации СПГ [Електронний ре-сурс]/ http://www. atominfo.ru/newsc/l0672.htm

Integration of a new CCGT plant and an existing LNG terminal at Barcelona port [Електронний ре-сурс]/ http://www.ivt.ntnu.no/ept/fag/tep4215/innho-ld/LNG%20Conferences/2005/SDS_TIF/050165.pdf

Evolution of an LNG Terminal: Senboku Terminal of Osaka Gas [Електронний ресурс]/ http://members.igu.org/html/wgc2006/pdf/paper/add1 1362.pdf

LNG IMPORT TERMINAL PROFILE: Bahia de Bizkaia Gas, Bilbao, Spain [Електронний ресурс]/ http://www.member.zeusintel.comZLNGR show_image.aspxid=1070

Мошенцев Ю.Л. Теплообменные аппараты ДВС: Учебное пособие [Текст]/ Ю.Л. Мошенцев. – Николаев: НУК, 2006. – 330с.

Кейс В.М. Компактные теплообменники [Текст]/ В.М. Кейс, А.Л. Лондон, пер. с англ. под ред. Ю.В. Петровского.– М., Энергия, 1967.– 224 с.

Загорученко В.А. Теплофизические свойства газообразного и жидкого метана [Текст]/ В.А. Загорученко, А.М. Журавлев. – М.: Издатель-ство комитета стандартов, мер и измерительных приборов, 1969. – 236 с.

Справочник по теплообменникам: В 2-х т. Т 2 [Текст]/ Пер. с англ. под ред. О.Г. Мартыненко и др. – М.: Энергоатомиздат, 1987. – 352 с.

Уонг Х. Основные формулы и данные по теп-лообмену для инженеров: Справочник [Текст]/ Х. Уонг, пер. С англ. В.В. Яковлева. – М.: Атомиздат, 1979. – 216 с.

Иськив Е.И. Подводный мир Черного моря [Текст]/ Е.И. Иськив. – Симферополь.: Таврия, 2002. – 64 с.

Идельчик И.Е. Справочник по гидравличес-ким сопротивлениям [Текст]/ Под ред. М. О. Штейнберга. – М.: Машиностроение, 1992. – 672 с.

Published

2014-10-28

Issue

Section

Power engineering and energy saving