EQUATIONS FOR REFRIGERANTS R32 AND R125 THERMAL CONDUCTIVITY CALCULATION

Authors

  • А.С. Бойчук Odessa National Maritime University, 34 Mechnikova str., Odessa, 65029, Ukraine, Ukraine

DOI:

https://doi.org/10.15673/0453-8307.6/2014.30694

Keywords:

Refrigerants – R32 – R125 – Thermal conductivity – Equations.

Abstract

Equations for thermal conductivity of alternative refrigerants R32and R125 for variable temperature and density were worked out. The reliable equation of state was used for each refrigerant. Coefficients of the equations were determined by least-square method

on the experimental data. The equations describe the thermal conductivity in the temperature range from 223 to 466 K at pressure up to 50 MPa for R32and  from 228 to 513 K at pressure up to 53 MPa for R125. The accuracy of the equations is acceptable for engineering calculations.

References

REFERENCES

N.B. Vargaftik. Teploprovodnost' szhatyh gazov i zhidkostej. // Izvestija VTI. – 1951. – № 7. – P.13–19.

V.V. Altunin. Teplophizicheskie svoistva dvuokisi ugleroda. – M.: Izd. Standartov, 1975. – 551 p.

N.B. Vargaftik, L.P. Filippov, A.A. Tarzimanov, E.E. Tockij. Spravochnik po teploprovodnosti zhidkostej i gazov. – M.: Energoatomizdat, 1990. – 352 p.

A.A. Vasserman, D.V. Fominsky. Equations of State for the Ozone-Safe Refrigerants R32 and R125. // International Journal of Thermophysics. – 2001. – Vol. 22. – No. 4. – P. 1089-1098.

doi: 10.1023/A:1010699806169

A.A. Vasserman, А.Y. Kreizerova. Optimizaciya chisla coefficientov uravneniya sostoyaniya. // Teplofizika vysokih temperatur. – 1978. – Т. 6. – № 6. – P. 1185-1188.

M. Papadaki, W.A. Wakeham. Thermal Conduc-tivity of R32 and R125 in the Liquid Phase at the Saturation Vapor Pressure. // International Journal of Thermophysics. – 1993. – Vol. 14. – No. 6. – P. 1215-1220. doi: 10.1007/BF02431285

Y. Tanaka, S. Matsuo, S. Taya. Gaseous Thermal Conductivity of Difluoromethane (HFC-32), Pentafluoroethane (HFC-125), and Their Mixtures. // International Journal of Thermophysics. – 1995. – Vol. 16. – No. 1. – P. 121-131. doi: 10.1007/BF01438963

M.J. Assael, L. Karagianidis. Measurements of the Thermal Conductivity of Liquid R32, R124, R125, and R141b. // International Journal of Thermophysics. – 1995. – Vol. 16. – No. 4. – P. 851-865. doi: 10.1007/BF02093468

S.T. Ro, J.Y. Kim, D.S. Kim. Thermal Conductivity of R32 and Its Mixture with R134a. // International Journal of Thermophysics. – 1995. – Vol. 16. – No. 5. – P. 1193-1201. doi: 10.1007/bf02081287

J. Yata, M. Hori, K. Kobayashi, T. Minamiya-ma. Thermal Conductivity of Alternative Refrigerants in the Liquid Phase. // International Journal of Thermophysics. – 1996. – Vol. 17. – No. 3. – P. 561-571. doi: 10.1007/BF01441503

U. Gross, Y.W. Song. Thermal Conductivities of New Refrigerants R125 and R32 Measured by the Transient Hot-Wire Method. // International Journal of Thermophysics. – 1996. – Vol. 17. – No. 3. – P. 607 619. doi: 10.1007/BF01441507

S.T. Ro, M.S. Kim, S.U. Jeong. Liquid Thermal Conductivity of Binary Mixtures of Diflnoromethane

(R32) and Pentafluoroethane (R125). // International Journal of Thermophysics. – 1997. – Vol. 18. – No. 4. – P. 991-999. doi: 10.1007/BF02575243

L. Sun, M. Zhu, L. Han, Z. Lin. Thermal Con-ductivity of Gaseous Difluoromethane and Pentafluoroethane near the Saturation Line. // J.Chem. Eng. Data. – 1997. – Vol. 42. – No. 1. – P. 179-182. doi: 10.1021/je960245k

B. Le Neidre, Y. Garrabos. Measurements of the Thermal Conductivity of HFC-32 (Difluoromethane) in the Temperature Range from 300 to 465 K at Pres-sures up to 50 MPa. // International Journal of Thermophysics. – 2001. – Vol. 22. – No. 3. – P. 701-722. doi: 10.1021/je0002078

L.C. Wilson, W.V. Wilding, G.M. Wilson, R.L. Rowley, V.M. Felix, T. Chisolm-Carter. Thermophysical Properties of HFC-125. // Fluid Phase Equilibria. – 1992. – No. 80. – P. 167-177. doi: 10.1016/0378-3812(92)87065-U

O.B. Tsvetkov, Yu.A. Laptev, A.G. Asambaev. Thermal Conductivity of Refrigerants R123, R134a, and R125 at Low Temperatures. // International Jour-nal of Thermophysics. – 1994. – Vol. 15. – No. 2. – P. 203-214. doi: 10.1007/BF01441582

O.B. Tsvetkov, A.V. Kletski, Yu.A. Laptev, A.G. Asambaev, I.A. Zausaev. Thermal Conductivity and PVT Measurements of Pentafluoroethane (Refrigerant HFC-125). // International Journal of Thermophysics. – 1995. – Vol. 16. – No. 5. – P. 1185-1192. doi: 10.1007/BF02081286

X. Gao, T. Yamada, Y. Nagasaka, A. Nagashima. The Thermal Conductivity of CFC Al-ternatives HFC-125 and HCFC-141b in the Liquid Phase. // International Journal of Thermophysics. – 1996. – Vol. 17. – No. 2. – P. 279-292.

doi: 10.1007/BF01443393

M.J. Assael, N. Malamataris, L. Karagiannadis. Measurements of the Thermal Conductivity of Refrig-erants in the Vapor Phase. // International Journal of Thermophysics. – 1997. – Vol. 18. – No. 2. – P. 341-352. doi: 10.1007/BF02575165

B. Le Neidre, Y. Garrabos. Measurements of the Thermal Conductivity of HFC-125 in the Temperature Range from 300 to 515 K at Pressures up to 53 MPa. // International Journal of Thermophysics. – 1999. – Vol. 20. – No. 2. – P. 375-399.

doi: 10.1021/je0002078

Published

2015-01-16

Issue

Section

Refrigeration engineering