EQUATIONS FOR CALCULATION REFRIGERANTS R32, R125 и R134a VISCOSITY AND THERMAL CONDUCTIVITY

Authors

  • А.С. Бойчук Odessa National Maritime University, 34 Mechnikova str., Odessa, 65029, Ukraine

DOI:

https://doi.org/10.15673/0453-8307.6/2013.32747

Keywords:

Refrigerants – R32 – R125 – R134a – Gas – Viscosity – Thermal conductivity – Equations.

Abstract

Equations for viscosity and thermal conductivity of alternative refrigerants R32, R125 and R134a are made by  temperature and pressure variables. Coefficients are determined from experimental and calculated data by means of least square method. Equations describe gas viscosity in temperature range from 298 to 423 K at pressure up to 5,5 MPa for R32, up to 3,7 MPa for R125 and up to 3,9 MPa for R134a. Gas thermal conductivity is described in temperature range from 283 to 434 K at pressure up to 5,0 MPa for R32, from 264 to 354 K at pressure up to 2,8 MPa for R125 and from 293 to 515 K at pressure up to 2,8 MPa for R134a. The precision of composed equations is quite acceptable for the engineering calculations.

References

N.B. Vargaftik. Teploprovodnost' szhatyh gazov i zhidkostej. // Izvestija VTI. – 1951. - № 7. – с. 13‑19.

I.F. Golubev. Vjazkost' gazov i gazovyh smesej. - M.: Fizmatgiz, 1959. – 377 с.

V.E. Ljusternik. Uravnenie vjazkosti szhatogo gazoobraznogo i zhidkogo vodoroda. // Teplofizika vysokih temperatur. – 1969. – Т.7. - № 2. – 367 – 369.

A.A. Vasserman, V.I. Nedostup. Uravnenie dlja rascheta kojefficienta vjazkosti azota i vodoroda v gazoobraznom i zhidkom sostojanijah. // Zhurnal prikladnoj mehaniki i tehnicheskoj fiziki. – 1971. - № 3. – с. 118 – 121.

N.B. Vargaftik, L.P. Filippov, A.A. Tarzimanov, E.E. Tockij. Spravochnik po teploprovodnosti zhidkostej i gazov. - M.: Jenergoatomizdat, 1990. - 352 с.

A.A. Vasserman. Uravnenija dlja rascheta vjazkosti szhatogo gaza pri vysokih temperaturah. // Teplofizika vysokih temperatur. – 1975. – Т.13. - №5. – с. 1104-1105.

M. Takahashi, N. Shibasaki-Kitakava, C. Yokoyama, S. Takahashi. Gas Viscosity of Difluromethane from 298.15 to 423.15 K and up to 10 MPa. // J. Chem. Eng. Data. – 1995. – Vol. 40. – p. 900 – 902. Doi: 10.1021/je00020a036

M. Takahashi, N. Shibasaki-Kitakava, C. Yokoyama. Viscosity of Gaseous HFC-125 (Pentafluoroethane) Under High Pressure. // International Journal of Thermophysics. – 1999. - Vol. 20. - No. 2. – p. 445‑453.

N. Shibasaki-Kitakava, M. Takahashi, C. Yokoyama. Viscosity of Gaseous HFC-134a (1,1,1,2-Tetrafluoroethane) Under High Pressure. // International Journal of Thermophisics. – 1998. - Vol. 19. - No. 5. –p. 1285 -1295.

R. Krauss, J. Luetmer-Strathman, J.V. Sengers, K. Stephan. Transport Properties of 1,1,1,2-Tetrafluoroethane (R134a). // International Journal of Thermophysics. – 1993. - Vol. 14. - No. 4. –p. 951‑988. Doi: 10.1007/bf00502117

A.A. Vasserman. O raschete teploprovodnosti gaza pri vysokih temperaturah i davlenijah. // Teplofizika vysokih temperatur. – 1972. – Т.10. - № 5. – с. 1116 - 1118.

A.A. Vasserman. Uravnenija dlja rascheta teploprovodnosti odnoatomnyh gazov pri vysokih temperaturah i davlenijah do 1000 bar. // Teplofizika vysokih temperatur. – 1975. –Т. 13. - №4. – с. 879 - 881.

Y.Tanaka, S. Matsuo, S. Taya. Gaseous Thermal Conductivity of Difluoromethane (HFC-32), Pentafluoroethane (HFC-125), and Their Mixtures. // International Journal of Thermophysics. – 1995. - Vol. 16. - No. 1. – p. 121 – 131. Doi: 10.1007/bf01438963

L. Sun, M. Zhu, L. Han, Z. Lin. Thermal Conductivity of Gaseous Difluoromethane and Pentafluoroethane near the Saturation Line. // J.Chem. Eng. Data. – 1997. – Vol. 42. – p. 179 – 182. Doi: 10.1021/je960245k

U. Gross, Y.W. Song. Thermal Conductivities of New Refrigerants R125 and R32 Measured by the Transient Hot-Wire Method. // International Journal of Thermophisics. – 1996. - Vol. 17. - No. 3. – p. 607 – 619. Doi: 10.1007/bf01441507

B. Le Neidre, Y. Garrabos. Measurements of the Thermal Conductivity of HFC-32 (Difluoromethane) in the Temperature Range from 300 to 465 K at Pressures up to 50 MPa. // International Journal of Thermophysics. – 2001. - Vol. 22. - No. 3. – p. 701 - 722.

M.J. Assael, N. Malamataris, L. Karagiannidis. Measurements of the Thermal Conductivity of Refrigerants in the Vapor Phase. // International Journal of Thermophysics. – 1997. - Vol. 18. - No. 2. – p. 341 - 352. Doi: 10.1007/bf02575165

Y. Tanaka, M. Tanaka, T. Makita. Thermal Conductivity of Gaseous HFC-134a, HFC-143a, HCFC-141b, and HCFC-142b. // International Journal of Thermophysics. 1991. - Vol. 12. - No. 6. – p. 949 - 963. Doi: 10.1007/bf00503512

A. Laesecke, R.A. Perkins, C.A. Nieto de Castro. Thermal Conductivity of R134a. // Fluid Phase Equlibria. – 1992. – Vol. 80. – p. 263 – 274. Doi: 10.1016/0378-3812(92)87073-v

U. Gross, Y.W. Song, E. Hahne. Thermal Conductivity of the New Refrigerants R134a, R152a, and R123 Measured by the Transient Hot-Wire Method. // International Journal of Thermophysics. – 1992. - Vol. 13. - No. 6. – p. 957 – 983. Doi: 10.1007/bf01141209

R. Yamamoto, S. Matsuo, Y. Tanaka. Thermal Conductivity of Halogenated Ethanes, HFC-134a, HCFC-123, and HCFC-141b. // International Journal of Thermophysics. – 1993. - Vol. 14. - No. 1. – p. 79‑90. Doi: 10.1007/bf00522663

O.B. Tsvetkov, Y. A. Laptev, A.G. Asambaev. Experimental study and correlation of the thermal conductivity of 1,1,1,2-tetrafluoroethane (R134a) in the rarefied gas state. // Int. J. Refrig. – 1995. - Vol. 18. - No. 6. – p. 373 – 377. Doi: 10.1016/0140-7007(95)98159-i

B. Le Neidre, Y. Garrabos, F. Gumerov, A. Sabirzianov. Measurements of the Thermal Conductivity of HFC-134a in the Supercritical Region. // J. Chem. Eng. Data. – 2009. – Vol. 54. – p. 2678 – 2688. Doi: 10.1021/je900210h

Published

2014-12-09

Issue

Section

Refrigeration engineering