INFLUENCE OF COMPRESSOR OIL AND TIO2 NANOPARTICLE ADDITIVES ON THE REFRIGERANT FLOW BOILING HEAT TRANSFER COEFFICIENT INSIDE HORIZONTAL TUBES
DOI:
https://doi.org/10.15673/0453-8307.5/2015.44790Keywords:
Nanofluids, Refrigerant / oil solutions, Boiling heat transfer, Heat transfer coefficient, Experiment, Calculation methodsAbstract
The results of a comprehensive experimental and theoretical study of the effect of compressor oil and TiO2 nanoparticle additives in isobutane on the local flow boiling heat transfer coefficients in the tube have been presented in the paper. The preparation of the working fluid (R600a / mineral oil / TiO2 nanoparticles) for systems with hermetic compressor Atlant CKH 150 has been described. The experimental data were approximated by the model that take into consideration the effect of oil and nanoparticle additives in the refrigerant on the local flow boiling heat transfer coefficient in the tube for solutions R600a/oil and R600a/oil/nanoparticle TiO2. It was shown that the TiO2 nanoparticle additives at concentration 0.0026 - 0.006 % wt. in the working fluid R600a / mineral oil does not influence on the values of the local flow boiling heat transfer coefficient in the tube.References
Mahbubul, I. M., Fadhilah, S. A., Saidur, R., Leong, K. Y., Amalina, M. A. (2013). Thermophisical properties and heat transfer performance of Al2O3/R134a nanorefrigerants. International Journal of Heat and Mass Transfer, 57/1, 100-108. doi:10.1016/j.ijheatmasstransfer.2012.10.007
Bartelt, K. Park, Y., Liu, L., Jacobi, A. (2008). Flow-Boiling of R-134a/POE/CuO Nanofluids in a Horizontal Tube. Proc. International Refrigeration and Air Conditioning Conference, Purdue University.
Peng, H., Ding, D., Jiang, W., Hu, H., Gao, Y. (2009). Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. International Journal of Refrigeration, 32/6, 1259-1270. doi:10.1016/j.ijrefrig.2009.01.025
Henderson, K., Park, Y., Liu, L., Jacobi, A. M. (2010). Flow boiling heat transfer of R-134a-based nanofluids in a horizontal tube. International Journal of Heat and Mass Transfer, 53/5-6, 944-951. doi:10.1016/j.ijheatmasstransfer.2009.11.026
Akhavan-Behabadi, M. A., Nasr, M., Baqeri, S. (2014). Experimental investigation of flow boiling heat transfer of R-600a/oil/CuO in a plain horizontal tube. Experimental Thermal and Fluid Science, 58, 105-111. doi:10.1016/j.expthermflusci.2014.06.013
Kattan, N., Thome, J. R., Favrat, D. (1998). Flow boiling in horizontal tubes: part 3 – development of a new heat transfer model based on flow pattern. Journal of Heat Transfer, 120/1, 156-165. doi:10.1115/1.2830039
Zhelezny, V. P., Chen, G.M., Shestopalov, K.O., Melnyk, A.V. (2014). Experimental and theoretical investigation of heat transfer coefficient for boiling of the isobutene/compressor oil solution flow in the pipe. Proc. 11th IIR Gustav Lorentzen Conference on Natural Refrigerants, IIR Hangzhou. China.
Ivanov, О.P. (1965). Experimental investigation the heat transfer of the refrigerant/oil solution at the boiling process. Holodilnaya tehnika, 3, 32–35. (in Russian).
Dittus, F.W., Boelter, L.M.К. (1985). Heat transfer if automobile radiators of the tubular type. International Communications in Heat and Mass Transfer, 12/1, 3 – 22. doi:10.1016/0735-1933(85)90003-X
Lukianov, M., Khliyeva, O., Zhelezny, V., Semenyuk, Y. (2015). Nanorefrigerants application possibilities study to increase the equipment ecological-energy efficiency. Eastern-European Journal of Enterprise Technologies, 3/5 (75). 32–40. (in Russian). DOI: 10.15587/1729-4061.2015.42565
11. Zhelezny, V. P. (2014). An application of nanotechnologies in refrigeration – perspectives and challenges. Proc. 11th IIR Gustav Lorentzen Conference on Natural Refrigerants, IIR Hangzhou. China.