MOLECULAR DYNAMICS OF DISPERSE SYSTEMS. 3. DISPERSION ISOTROPIC COMPLICATED MOLECULAR ENVIRONMENTS
DOI:
https://doi.org/10.15673/0453-8307.4/2013.57358Keywords:
Dispersion systems, Molecular interactions, Molecular models, Elongated and flat (discotic) molecules, Structure, physical and chemical properties - P-azoxyanisole (PAA) - N-(p-methoxybenzylidene) - p-n-butylaniline (MBB4A), Benzene-hexa-n-alkanoatesAbstract
The molecular dynamics method (MMD) implementation in the context of the complicated molecu-lar isotropic dispersive environments is considered. Particular attention is paid to elongated mol-ecules systems, as well as systems of flat (discotic) molecules due to their wide practical applica-tion (hydrocarbon, refrigerants¸ coolants, etc.), and also due to the ability of the systems under certain conditions (temperature, density, external fields) to form liquid crystals, anisotropic envi-ronments. P-azoxyanisole (PAA), N-(p-methoxybenzylidene)-p-n-butylaniline (MBBA), Benzene-hexa-n-alkanoates (BHA) and other systems with a similar molecular structure are discussed in detail. Such systems are of particular interest considering their specific properties and possible new effects associated with a transition from isotropic liquid to liquid crystal and solid, in particu-lar colloidal solutions and nanofluids.References
Цыкало А. Л. Жидкие кристаллы. – Киев. – Одесса. -Изд. «Выща школа».1989 – 148 с.
Imura H., Okano K., Van der Waals – Lifshitz forces between anisotropic ellipsoidal particles. J. Chem. Phys. – 1973. – V. 53, № 7. – P. 2763 – 2776.
Berne B. J., Pechukas P. J. Gaussian model po-tentials for molecular interactions. J. Chem. Phys. – 1972. – V. 56, № 8. – P. 4213 – 4216.
Goossens W. J. A. A molecular theory of the cho-lesteric phase. Phys. Lett. – 1970. – V. 31A, № 8. – P. 413 – 414.
Beeman D. J. Some multistep methods for use in molecular dynamics calculations. Comput. Phys. – 1976. – V. 20, № 2. – P. 130 – 139.
Kobinata A,, Nakajima Y., Yoshida H. et al. Mol. Cryst. Liq. Cryst. – 1981.- V. 66. – P. 67.
Багмет А. Д., Цыкало А. Л. Исследование динамики перехода Фредерикса методом машин-ного моделирования.. Украинский физический журнал. – 1986. – Т. 31, № 3 . – с. 387 – 393.