Integration of singularly perturbed second order differential equations by double series

Authors

DOI:

https://doi.org/10.15587/2313-8416.2017.118874

Keywords:

differential equation, double series, small parameter, formal solutions, asymptotic solutions

Abstract

A short historical analysis of the problem of constructing asymptotic solutions of linear differential equations and systems with a small parameter is presented. The method of integrating singularly perturbed differential equations of the second order by double series is developed. This approach is based on the construction of the investigated equation to the corresponding singularly perturbed linear system of differential equations. The advantages of applying the theory of double series are emphasized

Author Biographies

Olena Chornenka, Nizhyn Gogol State University Hrafska str., 2, Nizhyn, Chernigov region, 16600

PhD

Department of Mathematics and Economics

Anastasia Gusak, Nizhyn Gogol State University Hrafska str., 2, Nizhyn, Chernigov region, 16600

Educational and Scientific Institute of Exact Sciences and Economics

References

Sotnichenko, N. A., Feshchenko, S. F. (1980). Asimptoticheskoe integrirovannie differentsialnykh uravneniy. Kyiv, 48.

Yakovets, V. P., Golovchenko, O. V. (2009). Asymptotychni rozvyazky synhulyarno zburenoyi liniynoyi systemy dyferentsialnykh rivnyan z irrehulyarnoyu osoblyvoyu tochkoyu. Neliniyni kolyvannya, 12 (3), 417–432.

Golovchenko, O. V., Yakovets V. P. (2007). Pobudova rozvyazkiv liniynykh system z osoblyvoyu tochkoyu ta parametrom. Trudy IPMM NAN Ukrainy, 15, 40–49.

Balser, W., Mozo-Fernandez, J. (2002). Multisummability of Formal Solutions of Singular Perturbation Problems. Journal of Differential Equations, 183 (2), 526–545. doi: 10.1006/jdeq.2001.4143

Canalis-Durand, M., Mozo-Fernandez, J., Schafke, R. (2007). Monomial summability and doubly singular differential equations. Journal of Differential Equations, 233 (2), 485–511. doi: 10.1016/j.jde.2006.11.005

Chornenka, O. V. (2016). Asymptotychnyy analiz liniynykh system dyferentsialnykh rivnyan z parametrom ta rehulyarnoyu osoblyvoyu tochkoyu. Visnyk Cherkaskoho universytetu, 1, 90–99.

Zavizion, G. V. (2007). Singulyarno vozmushchennaya sistema differentsialnykh uravneniy s ratsionalnoy osobennostyu. Differentsialnye uravneniya, 43 (7), 867–878.

Shkil, M. I., Zavizion, H. V. (2000). Asymptotychne zvedennia synhuliarno zburenoi systemy dyferentsialnykh rivnian z rehuliarnoiu osoblyvistiu do diahonalnoho vyhliadu. Dopovidi Natsionalnoi akademii nauk Ukrainy, 12, 25–29.

Yakovets, V. P. (1992). Metody vozmushcheniy v zadache asimptoticheskogo integrirovaniya vyrozhdayutsikhsya singulyarno vozmushchennykh lineynykh sistem s dvumya malimi parametrami. Kyiv, 52.

Shkil, M. I. (1971). Asymptotychni metody v dyferentsialnykh rivnyannyakh. Kyiv: Vyshcha shkola, 226.

Yakovets, V. P. (2007). Integrirovanie lineynykh singulyarno vozmushchennykh sistem differentsialnykh uravneniy s pomoshchyu dvoynykh ryadov. Naukovi zapysky NPU imeni M. P. Drahomanova. Seriya 1 “Fizyko-matematychni nauky”, 8, 211–227.

Samoylenko, A. M., Shkil, M. I., Yakovets, V. P. (2000). Liniyni systemy dyferentsialnykh rivnyan z vyrodzhennyamy. Kyiv: Vyshcha shkola, 294.

Published

2017-12-30

Issue

Section

Physics and mathematics