Integration of singularly perturbed second order differential equations by double series
DOI:
https://doi.org/10.15587/2313-8416.2017.118874Keywords:
differential equation, double series, small parameter, formal solutions, asymptotic solutionsAbstract
A short historical analysis of the problem of constructing asymptotic solutions of linear differential equations and systems with a small parameter is presented. The method of integrating singularly perturbed differential equations of the second order by double series is developed. This approach is based on the construction of the investigated equation to the corresponding singularly perturbed linear system of differential equations. The advantages of applying the theory of double series are emphasized
References
Sotnichenko, N. A., Feshchenko, S. F. (1980). Asimptoticheskoe integrirovannie differentsialnykh uravneniy. Kyiv, 48.
Yakovets, V. P., Golovchenko, O. V. (2009). Asymptotychni rozvyazky synhulyarno zburenoyi liniynoyi systemy dyferentsialnykh rivnyan z irrehulyarnoyu osoblyvoyu tochkoyu. Neliniyni kolyvannya, 12 (3), 417–432.
Golovchenko, O. V., Yakovets V. P. (2007). Pobudova rozvyazkiv liniynykh system z osoblyvoyu tochkoyu ta parametrom. Trudy IPMM NAN Ukrainy, 15, 40–49.
Balser, W., Mozo-Fernandez, J. (2002). Multisummability of Formal Solutions of Singular Perturbation Problems. Journal of Differential Equations, 183 (2), 526–545. doi: 10.1006/jdeq.2001.4143
Canalis-Durand, M., Mozo-Fernandez, J., Schafke, R. (2007). Monomial summability and doubly singular differential equations. Journal of Differential Equations, 233 (2), 485–511. doi: 10.1016/j.jde.2006.11.005
Chornenka, O. V. (2016). Asymptotychnyy analiz liniynykh system dyferentsialnykh rivnyan z parametrom ta rehulyarnoyu osoblyvoyu tochkoyu. Visnyk Cherkaskoho universytetu, 1, 90–99.
Zavizion, G. V. (2007). Singulyarno vozmushchennaya sistema differentsialnykh uravneniy s ratsionalnoy osobennostyu. Differentsialnye uravneniya, 43 (7), 867–878.
Shkil, M. I., Zavizion, H. V. (2000). Asymptotychne zvedennia synhuliarno zburenoi systemy dyferentsialnykh rivnian z rehuliarnoiu osoblyvistiu do diahonalnoho vyhliadu. Dopovidi Natsionalnoi akademii nauk Ukrainy, 12, 25–29.
Yakovets, V. P. (1992). Metody vozmushcheniy v zadache asimptoticheskogo integrirovaniya vyrozhdayutsikhsya singulyarno vozmushchennykh lineynykh sistem s dvumya malimi parametrami. Kyiv, 52.
Shkil, M. I. (1971). Asymptotychni metody v dyferentsialnykh rivnyannyakh. Kyiv: Vyshcha shkola, 226.
Yakovets, V. P. (2007). Integrirovanie lineynykh singulyarno vozmushchennykh sistem differentsialnykh uravneniy s pomoshchyu dvoynykh ryadov. Naukovi zapysky NPU imeni M. P. Drahomanova. Seriya 1 “Fizyko-matematychni nauky”, 8, 211–227.
Samoylenko, A. M., Shkil, M. I., Yakovets, V. P. (2000). Liniyni systemy dyferentsialnykh rivnyan z vyrodzhennyamy. Kyiv: Vyshcha shkola, 294.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Olena Chornenka, Anastasia Gusak
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.