Features of the precession of the two-frequency pendulum

Authors

DOI:

https://doi.org/10.15587/2313-8416.2018.134334

Keywords:

water molecule, precession, two-frequency pendulum, anisotropy, oscillation type, inhomogeneous field of forces

Abstract

An analysis of the precession of the rotational oscillations of water molecules is made using the model of a two-frequency pendulum in the entire range of its oscillations. It is found that the precession of a two-frequency pendulum in the field of inhomogeneous interaction forces is anisotropic. The largest anisotropy is observed at the critical point of the change in the type of oscillations from the two-frequency one to the single-frequency one. The manifestation of precession singularities (phase changes) in the region of two-frequency oscillations, observed for cases of small initial velocities of pendulum oscillations, is considered

Author Biography

Nikolay Malafayev, Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of physical, mathematical and engineering disciplines

References

Eisenberg, D., Kauzmann, W. (1975). The structure and properties of water. Leningrad: Gidrometeoizdat, 280.

Antonchenko, V. Ya., Davydov, А. S., Iliin, V. V. (1991). Оsnovy fizyky vody. Kyiv: Naukova dumka, 672.

Bersuker, I. B. (1987). The Jahn-Teller Effect and Vibronic Interactions in Modern Chemistry. Moscow: Nauka, 344.

Malafayev, N. T. (2011). O vzaimodeystviyakh i dinamike molekul v chistoy vode [About the interactions and dynamics of molecules in clean water]. Eastern-European Journal of Enterprise Technologies, 4 (8 (52)), 48–58. Available at: http://journals.uran.ua/eejet/article/view/1465/1363

Malafayev, N. T., Pogozhikh, N. I. (2015). Features rotational of vibrations of water molecules. Eastern-European Journal of Enterprise Technologies, 2 (5 (74)), 27–35. doi: http://doi.org/10.15587/1729-4061.2015.40569

Krylov, A. N. (1954). Lekcii po priblizhennym vychisleniyam [Lectures on approximate calculations]. Moscow: Gostehizdat, 400.

Zel’dovich, B. Y., Soileau, M. J. (2004). Bi-frequency pendulum on a rotary platform: modeling various optical phenomena. Uspekhi Fizicheskih Nauk, 174 (12), 1337–1354. doi: http://doi.org/10.3367/ufnr.0174.200412e.1337

Viet, L. D., Nghi, N. B. (2014). On a nonlinear single-mass two-frequency pendulum tuned mass damper to reduce horizontal vibration. Engineering Structures, 81, 175–180. doi: http://doi.org/10.1016/j.engstruct.2014.09.038

Neistadt, А. I. (2005). Capture in resonance and scattering by resonances in two-frequency systems. Trudy matematicheskogo instituta, 250, 198–218.

Malenkov, G. G. (2006). Struktura i dinamika zhidkoi vody [Structure and dynamics of liquid water]. Journal structural chemistry, 47, 5–35.

Miceli, G., de Gironcoli, S., Pasquarello, A. (2015). Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions. The Journal of Chemical Physics, 142 (3), 034501. doi: http://doi.org/10.1063/1.4905333

Malenkov, G. G., Naberukhin, Y. I., Voloshin, V. P. (2012). Collective effects in molecular motions in liquids. Russian Journal of Physical Chemistry A, 86 (9), 1378–1384. doi: http://doi.org/10.1134/s003602441209004x

Malafayev, N. T. (2016). Rotational oscillations of water molecules as oscillations of a spherical pendulum in an inhomogeneous field of forces. ScienceRise, 2 (2 (19)), 62–69. doi: http://doi.org/10.15587/2313-8416.2016.60587

Malafayev, N. T. (2018). Analysis of phase diagrams of the two-frequency pendulum as models of rotational vibrations of water molecules. ScienceRise, 1 (42), 50–56. doi: http://doi.org/10.15587/2313-8416.2018.121426

Published

2018-06-20

Issue

Section

Physics and mathematics