Classification of volyn forests according to data of multispectral satellite images

Authors

DOI:

https://doi.org/10.15587/2313-8416.2018.143139

Keywords:

remote sensing of the earth, space image, monitoring of forests, controlled classification, standard

Abstract

The article deals with the issue of combining modern open geographic information systems and data from remote sensing of the Earth in the tasks of forest management. Classifiers have been developed based on the method of field uplift and the designation of landfills on the basis of existing plans for afforestation. Controlled classification of research objects is conducted and the accuracy of the results is evaluated. It is established that the accuracy of the determination of individual classes directly depends on the percentage of objects and errors of the end user in the process of their definition

Author Biographies

Oleksandr Melnyk, Lesya Ukrainka Eastern European National University Voli ave., 13, Lutsk, Ukraine, 43025

PhD, Associate Professor

Department of Geodesy, Land Management and Cadastre

Pavlo Manko, Lesya Ukrainka Eastern European National University Voli ave., 13, Lutsk, Ukraine, 43025

Postgraduate student

Department of Geodesy, Land Management and Cadastre

References

Burshtynska, Kh. V., Stankevych, S. A. (2010). Aerokosmichni znimalni systemy [Aerospace shooting systems]. Lviv: Lviv Polytechnic Publishing House, 292.

Burshtynska, Kh. V., Polishchuk, B. V., Kovalchuk, O. Yu. (2013). Doslidzhennia metodiv klasyfikatsii lisiv z vykorystanniam kosmichnykh znimkiv vysokoho rozriznennia [Research of methods of classification of forests using space images of high distinction]. Geodesy, cartography and aerial photography, 78, 101–110. Available at: http://ena.lp.edu.ua:8080/handle/ntb/20062

Kokhan, S. S., Vostokov, A. B. (2009). Dystantsiine zonduvannia Zemli: teoretychni osnovy [Remote Earth Sensing: Theoretical Basis]. Kyiv: High school, 511.

Manoilov, V. P., Omelchuk, V. V., Opaniuk, V. V. (2008). Dystantsiine zonduvannia Zemli iz kosmosu: naukovo tekhnichni osnovy formuvannia y obrobky vydovoi informatsii [Remote sensing of the Earth from space: scientific and technical basis for the formation and processing of species information]. Zhytomyr: ZhDTU, 384.

Lialko, V. I., Popov, M. O. (Eds.) (2006). Bahatospektralni metody dystantsiinoho zonduvannia Zemli v zadachakh pryrodokorystuvannia [Multispectral remote sensing in nature management]. Kyiv: Scientific thought, 360.

Sakhatsky, A. I., Khodorovsky, A. Ya., Bujanova, I. J., McCallum, I. (2002). Classification of Space Images for Forest State Identification Within the Siberia Region: Part 1. Laxenburg. Available at: http://pure.iiasa.ac.at/6756

QGIS. A Free and Open Source Geographic Information System. Available at: http://www.qgis.org/ Last accessed: 04.09.2018

Congedo, L. (2016). Semi-Automatic Classification Plugin Documentation. ResearchGate. doi: http://dx.doi.org/10.13140/RG.2.2.29474.02242/1

Richards, J. A., Jia, X. (2006). Remote Sensing Digital Image Analysis: An Introduction. Berlin: Springer, 438. doi: http://doi.org/10.1007/3-540-29711-1

Congalton, R., Green, K. (2009). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Boca Raton: CRC Press, 200.

ESA Sentinel online. Available at: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 Last accessed: 05.09.2018

Hrom, M. M. (2007). Lisova taksatsiia [Forest tax]. Lviv: RVV LNTU, 416.

Published

2018-09-26

Issue

Section

Technical Sciences