Optimization of the flocculation process of industrial waste water treatment

Authors

  • Oleksіi Shestopalov National technical university «Kharkov polytechnic institute» 21, street of Frunze, Kharkov, Ukraine, 61002, Ukraine
  • Oleksandr Briankin National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-7897-4417
  • Nadegda Rykusova National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0003-0963-1805
  • Oksana Hetta National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-1762-6953

DOI:

https://doi.org/10.15587/2313-8416.2019.189708

Keywords:

flocculation, aggregation, strength of aggregates, deposition rate, optimization, hydromechanical destruction of floccules

Abstract

The influence of the concentration of the solid phase and the flow rate of the flocculant on the change in the sedimentation rate of the solid phase and the strength of the floccules is studied. A technique is proposed for optimizing the parameters of aggregation and increasing the strength of floccules after hydromechanical influences, taking into account the concentration of the solid phase and the flocculant flow. It is found that the optimal conditions for aggregation can be achieved by minimizing the hydromechanical effects on floccules, as well as creating the best conditions for flocculation. Among the ways to optimize the process, the ways of influencing these factors due to the technological features of the introduction of the process are analyzed, such as concentration adjustment, transport rate of flocculed sludge, mixing time

Author Biographies

Oleksіi Shestopalov, National technical university «Kharkov polytechnic institute» 21, street of Frunze, Kharkov, Ukraine, 61002

Candidate of engineering sciences, associate professor

Department of chemical technique and industrial ecology

Oleksandr Briankin, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Postgraduate Student

Department of Chemical Technique and Industrial Ecology

Nadegda Rykusova, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Postgraduate Student

Department of Chemical Technique and Industrial Ecology

Oksana Hetta, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Postgraduate Student

Department of Chemical Technique and Industrial Ecology

References

Walsh, M. E., Zhao, N., Gora, S. L., Gagnon, G. A. (2009). Effect of coagulation and flocculation conditions on water quality in an immersed ultrafiltration process. Environmental Technology, 30 (9), 927–938. doi: http://doi.org/10.1080/09593330902971287

Nandy, T., Shastry, S., Pathe, P. P., Kaul, S. N. (2003). Pre-treatment of currency printing ink wastewater through coagulation-flocculation process. Water, Air, and Soil Pollution, 148 (1/4), 15–30. doi: http://doi.org/10.1023/a:1025454003863

Laue, C., Hunkeler, D. (2006). Chitosan-graft-acrylamide polyelectrolytes: Synthesis, flocculation, and modeling. Journal of Applied Polymer Science, 102 (1), 885–896. doi: http://doi.org/10.1002/app.24188

Gurse, A., Yalcin, M., Dogar, C. (2003). Removal of Remazol Red RB by using Al(III) as coagulant-flocculant: effect of some variables on settling velocity. Water, Air, and Soil Pollution, 146 (1/4), 297–318. doi: http://doi.org/10.1023/a:1023994822359

Shkop, A., Tseitlin, M., Shestopalov, O. (2016). Exploring the ways to intensify the dewatering process of polydisperse suspensions. Eastern-European Journal of Enterprise Technologies, 6 (10 (84)), 35–40. doi: http://doi.org/10.15587/1729-4061.2016.86085

Shkop, A., Tseitlin, M., Shestopalov, O., Raiko, V. (2017). Study of the strength of flocculated structures of polydispersed coal suspensions. Eastern-European Journal of Enterprise Technologies, 1 (10 (85)), 20–26. doi: http://doi.org/10.15587/1729-4061.2017.91031

Wang, Y., Chen, K., Mo, L., Li, J., Xu, J. (2014). Optimization of coagulation–flocculation process for papermaking-reconstituted tobacco slice wastewater treatment using response surface methodology. Journal of Industrial and Engineering Chemistry, 20 (2), 391–396. doi: http://doi.org/10.1016/j.jiec.2013.04.033

Bridgeman, J., Jefferson, B., Parsons, S. A. (2009). Computational Fluid Dynamics Modelling of Flocculation in Water Treatment: A Review. Engineering Applications of Computational Fluid Mechanics, 3 (2), 220–241. doi: http://doi.org/10.1080/19942060.2009.11015267

Bache, D. H. (2004). Floc rupture and turbulence: a framework for analysis. Chemical Engineering Science, 59 (12), 2521–2534. doi: http://doi.org/10.1016/j.ces.2004.01.055

Hogg, R.; Dobias, B., Stechemesser, H. (Eds.) (2005). Flocculation and dewatering of fine-particle suspension. Coagulation and flocculation. Boca Raton: CRC Press, 805–850. doi: http://doi.org/10.1201/9781420027686.ch12

Shestopalov, O., Briankin, O., Tseitlin, M., Raiko, V., Hetta, O. (2019). Studying patterns in the flocculation of sludges from wet gas treatment in metallurgical production. Eastern-European Journal of Enterprise Technologies, 5 (10 (101)), 6–13. doi: http://doi.org/10.15587/1729-4061.2019.181300

Trinh, T. K., Kang, L. S. (2011). Response surface methodological approach to optimize the coagulation–flocculation process in drinking water treatment. Chemical Engineering Research and Design, 89 (7), 1126–1135. doi: http://doi.org/10.1016/j.cherd.2010.12.004

Shestopalov, O., Rykusova, N., Hetta, O., Ananieva, V., Chynchyk, O. (2019). Revealing patterns in the aggregation and deposition kinetics of the solid phase in drilling wastewater. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 50–58. doi: http://doi.org/10.15587/1729-4061.2019.157242

Published

2019-12-28

Issue

Section

Technical Sciences