Thermoelectric coefficients in Landauer-Datta-Lundstrom transport model

Authors

  • Юрий Алексеевич Кругляк Odessa State Environmental University, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.35893

Keywords:

nanophysics, nanoelectronics, molecular electronics, thermoelectric coefficients, Fermi-Dirac integrals

Abstract

On the basis of the «bottom – up» approach of Landauer-Datta-Lundstrom transport model the basic equations of thermoelectricity with the corresponding transport coefficients for 1D conductors in the ballistic regime and 3D conductors in the diffusion regime with an arbitrary dispersion and for any size were strictly derived. The thermoelectric coefficients for 1D, 2D, and 3D semiconductors with parabolic dispersion in the ballistic and diffusive regimes are expressed through standard Fermi-Dirac integrals.

Author Biography

Юрий Алексеевич Кругляк, Odessa State Environmental University

Doctor of Chemical Sciences, Professor

Department of Information Technologies

References

Kruglyak, Yu. A. (2013). The Generalized Landauer-Datta-Lunstrom Electron Transport Model. Nanosystems, Nanomaterials, Nanotechnologies, 11 (3), 519–549. Erratum: ibid, (2014)., 12 (2), 415.

Kruglyak, Yu. A. (2013). From Ballistic Conductivity to Diffusional in the Landauer-Datta-Lunstrom. Transport Model, Nanosystems, Nanomaterials, Nanotechnologies, 11 (4), 655–677.

Kruglyak, Yu. A. (2014). Thermoelectric phenomena and devices in the Landauer-Datta-Lunstrom approach. ScienceRise, 3/2(5), 73–88. doi: 10.15587/2313-8416.2014.27967

Lundstom, M., Guo, J. (2006). Nanoscale Transistors: Physics, Modeling, and Simulation. Berlin: Springer, 218.

Kim, R., Lundstrom, M. S. Notes on Fermi – Dirac Integrals. Purdue University. Available at: www.nanohub.org/resources/5475

Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/resources/11763

Sommerfeld, A. (1928). An electronic theory of the metals based on Fermi's statistics. Journal of Physics, 47 (1), 1.

Ashcroft, N. W., Mermin, N. D. (1979). Solid State Physics (Philadelphia: Suanders College, 486.

Geballe, T. N., Hull, G. W. (1954). Seebeck Effect in Germanium, Physical Review, 94 (5), 1134–1140. doi: 10.1103/physrev.94.1134

Pierret, R. F. (1996). Semiconductor Device Fundamentals. Reading, MA: Addison–Wesley, 792.

Kim, R. S. (2011). Physics and Simulation of Nanoscale Electronic and Thermoelectric Devices. West Lafayette: Purdue University, 218.

Supriyo, D. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Company, 473. Available at: www.nanohub.org/courses/FoN1

Kruglyak, Yu. A., Kruglyak, N. Yu., Strikha, М. V. (2013). Lessons of nanoelectronics. Thermoelectric phenomena in «bottom – up» approach, Sensor Electronics Microsys. Tech., 13 (1), 6–21.

Kruglyak, Yu. A. (2013). Lessons of nanoelectronics. 4. Thermoelectric phenomena in «bottom – up» approach. Physics in Higher Education, 19 (4), 70–85.

Published

2015-01-25

Issue

Section

Physics and mathematics