Anomaly detection technique for web applications performance using kendall's rank correlation coefficient

Authors

  • Антон Александрович Сытник Cherkasy state technological university blv. Shevchenko, 460, Cherkasy, Ukraine, 18000, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.37461

Keywords:

anomaly detection, web applications, Kendall’s rank correlation coefficient

Abstract

This article presents the anomaly detection technique in web applications performance using Kendall’s rank correlation coefficient. Theoretical stages are described and simulation modeling to detect such anomalies in web applications performance is conducted. This technique makes possible to detect performance anomaly for web applications, based on correlation relationships between variables, but it doesn’t give any details on where exactly the anomaly occurred in the source code and why

Author Biography

Антон Александрович Сытник, Cherkasy state technological university blv. Shevchenko, 460, Cherkasy, Ukraine, 18000

PHD student

Department of program software 

References

Thomas, P. R. (2007). Modern engineering statistics. Wiley-Interscience, 1st edition, 736. doi: 10.1002/9780470128442

Benesty, A. A. (2009). Pearson Correlation Coefficient. Springer Berlin Heidelberg, 326.

Jerrold, H. Z. (1972). Significance Testing of the Spearman Rank Correlation Coefficient. Journal of the American Statistical Association, 67 (339), 578–580. doi: 10.2307/2284441

Harchenko, M. A. (2008). Correlation analiz. Manual for students, 31.

Magalhaes, J. P., Silva, L. M. (2012). Anomaly Detection Techniques for Web-Based Applications: An Experimental Study. In Proceedings of the 11th IEEE International Symposium on Network Computing and Applications, 181–190. doi: 10.1109/nca.2012.27

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira, C. L., Loingtier, J. M., Irwin, J. (1997). Aspect-Oriented Programming. In Proceedings of the 11th European Conference on Object Oriented Programming, 220–242. doi: 10.1007/bfb0053381

Cherkasova, L., Ozonat, K. M., Ningfang, M., Symons, J., Smirni, E. (2008). Anomaly? Application Change? or Workload Change? Towards Automated Detection of Application Performance Anomaly and Change. In Proceedings of the International Conference on Dependable Systems and Networks, 452–461. doi: 10.1109/dsn.2008.4630116

Aguilera, M. K., Mogul, J. C., Wiener, J. L., Reynolds, P., Muthitacharoen, A. (2003). Performance debugging for distributed systems of black boxes. In Proceedings of the nineteenth ACM symposium on Operating Systems Principles, 74–89.

MyBatis – MyBatis-Spring Sample Code. Available at: https://mybatis.github.io/spring/sample.html

TPC-W: Benchmarking an Ecommerce Solution. Available at: http://www.tpc.org/tpcw/

MySQL : The World's Most Popular Open Source Database. Available at: http://www.mysql.com/

jeeObserver. J2EE performance monitoring tool. Available at: http://www.jeeobserver.com/

InfraRED. Opensource J2EE Performance Monitoring Tool. Available at: http://infrared.sourceforge.net/

JavaMelody. Monitoring of JavaEE applications. Available at: http://code.google.com/p/javamelody/

Published

2015-02-25

Issue

Section

Technical Sciences