The «bottom – up» nanoelectronics: elements of spintronics and magnetronics

Authors

  • Юрій Олексійович Кругляк Odessa State Environmental University, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.47792

Keywords:

nanoelectronics, spintronics, spin valve, spin potential, spin moment, spin current

Abstract

Basic topics of spintronics such as spin valve, interface resistance due to mode mismatch, spin potentials, non-local spin voltage, spin moment and its transport, Landau – Lifshitz – Gilbert equation with application to an “easy axis” of a magnet, nanomagnet dynamics by spin current, polarizers and analyzers of spin current, diffusion equation for ballistic transport and current in terms of non-equllibrium potentials are discussed in the frame of the «bottom – up» approach of modern nanoelectronics

Author Biography

Юрій Олексійович Кругляк, Odessa State Environmental University

Doctor of Chemical Sciences, Professor

Department of Information Technologies

References

Krugljak, Ju. O., Krugljak, N. Ju., Striha, M. V. (2012). Uroky nanoelektroniky: vynyknennja strumu, formuljuvannja zakonu Oma i mody providnosti v koncepcii' «znyzu–vgoru». Sensorna elektronika i mikrosystemni tehnologii', 9 (4), 5–29.

Kruglyak Yu. A. (2015). Nanoelectronics «bottom – up»: current generation, generalized ohm’s law, elastic resistors, conductivity modes, thermoelectricity. ScienceRise, 7/2 (12), 76–100. doi: 10.15587/2313-8416.2015.45700

Supriyo, D. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Co, 471. Available at: https://nanohub.org/courses/FoN1

Dyakonov, M. I., Perel, V. I. (1971). Current-induced spin orientation of electrons in semiconductors. Physics Letters A, 35 (6), 459–460. doi: 10.1016/0375-9601(71)90196-4

Julliere, M. (1975). Tunneling between ferromagnetic films. Physics Letters A, 54 (3), 225–226. doi: 10.1016/0375-9601(75)90174-7

Aronov, A. G., Pikus, G. E. (1976). Spinovaja inzhekcija v poluprovodnikah. Fizika i tehnika poluprov, 10, 1177–1180.

Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., Petroff, F., Etienne, P., Chazelas, J. (1988). Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters, 61 (21), 2472–2475. doi: 10.1103/physrevlett.61.2472

Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical Review B, 39 (7), 4828–4830. doi: 10.1103/physrevb.39.4828

Mott, N. F. (1936). The Electrical Conductivity of Transition Metals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 153 (880), 699–717. doi: 10.1098/rspa.1936.0031

Mott, N. F. (1964). Electrons in transition metals. Advances in Physics, 13 (51), 325–422. doi: 10.1080/00018736400101041

Pogorilyj, A. M., Rjabchenko, S. M., Tovstolytkin, O. I. (2010). Spintronika. Osnovni javyshha. Tendencii' rozvytku. Ukr. fiz. zhurn. Ogljady, 6 (1), 37–97.

Schmidt, G. (2005). Concepts for spin injection into semiconductors–a review. Journal of Physics D: Applied Physics, 38 (7), R107–R122. doi: 10.1088/0022-3727/38/7/r01

Valet, T., Fert, A. (1993). Theory of the perpendicular magnetoresistance in magnetic multilayers. Physical Review B, 48 (10), 7099–7113. doi: 10.1103/physrevb.48.7099

Sears, F. W., Salinger, G. L. (1975). Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. Boston: Addison-Wesley, 331–336, 355–361.

Kubo, R. (1957). Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan, 12 (6), 570–586. doi: 10.1143/jpsj.12.570

Martin, P. C., Schwinger, J. (1959). Theory of Many-Particle Systems. I. Physical Review, 115 (6), 1342–1373. doi: 10.1103/physrev.115.1342

Kadanoff, L. P., Baym, G. (1962). Quantum Statistical Mechanics. New York: W. A. Benjamin, 2003.

Keldysh, L. V. (1964). Diagram Technique for Non-Equilibrium Processes. ZhJeTF, 47, 1515–1527.

Takahashi, S., Maekawa, S. (2003). Spin injection and detection in magnetic nanostructures. Physical Review B, 67 (5), 052409. doi: 10.1103/physrevb.67.052409

Tretjak, O. V., L'vov, V. A., Barabanov, O. V. (2002). Fizychni osnovy spinovoi' elektroniky. Kyi'v: Vyd-vo Kyi'vs'kogo universytetu, 314.

Danilov, Ju. A., Demidov, E. S., Ezhevskij, A. A. (2009). Osnovy spintroniki. Nizhnij Novgorod: Nizhegorodskij gosudarstvennyj universitet im. N. I. Lobachevskogoju, 173.

Aplesnin, S. S. (2010). Osnovy spintroniki. Sankt-Peterburg: Izd-vo LAN'', 288.

Tsoi, M., Jansen, A. G. M., Bass, J., Chiang, W.-C., Seck, M., Tsoi, V., Wyder, P. (1998). Excitation of a Magnetic Multilayer by an Electric Current. Physical Review Letters, 80 (19), 4281–4284. doi: 10.1103/physrevlett.80.4281

Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N., Buhrman, R. A. (1999). Current-Induced Switching of Domains in Magnetic Multilayer Devices. Science, 285 (5429), 867–870. doi: 10.1126/science.285.5429.867

Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B., Ralph, D. C. (2000). Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu/Co Pillars. Physical Review Letters, 84 (14), 3149–3152. doi: 10.1103/physrevlett.84.3149

Berger, L. (1996). Emission of spin waves by a magnetic multilayer traversed by a current. Physical Review B, 54 (13), 9353–9358. doi: 10.1103/physrevb.54.9353

Slonczewski, J. C. (1996). Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 159 (1–2), L1–L7. doi: 10.1016/0304-8853(96)00062-5

Bazaliy, Y. B., Jones, B. A., Zhang, S.-C. (1998). Modification of the Landau-Lifshitz equation in the presence of a spin-polarized current in colossal- and giant-magnetoresistive materials. Physical Review B, 57 (6), R3213–R3216. doi: 10.1103/physrevb.57.r3213

Sun, J. Z. (2000). Spin-current interaction with a monodomain magnetic body: A model study. Physical Review B, 62 (1), 570–578. doi: 10.1103/physrevb.62.570

Ralph, D. C., Stiles, M. D. (2008). Spin transfer torques. Journal of Magnetism and Magnetic Materials, 320 (7), 1190–1216. doi: 10.1016/j.jmmm.2007.12.019

Landau, L. D., Lifshic, E. M. (1935). K teorii dispersii magnitnoj pronicaemosti ferromagnitnyh tel. Phys. Z. Sowjetunion, 8, 153–169.

Landau, L. D., Lifshica, E. M. (1969). K teorii dispersii magnitnoj pronicaemosti ferromagnitnyh tel. Moscow: Nauka, 1, 97.

Gilbert, T. L. (2004). Classics in Magnetics A Phenomenological Theory of Damping in Ferromagnetic Materials. IEEE Transactions on Magnetics, 40 (6), 3443–3449. doi: 10.1109/tmag.2004.836740

Zvezdin, A. K., Zvezdin, K. A., Hval'kovskij, A. V. (2008). Obobshhennoe uravnenie Landau – Lifshica i processy perenosa spinovogo momenta v magnitnyh nanostrukturah. UFN, 178, 436–442.

Mewes, T. et al. Magnetization dynamics including spin-torque. – Available at: http://www.bama.ua.edu/~tmewes/

Nanohub (2012). Available at: https://nanohub.org/groups/u

PurdueX (2015). Available at: https://www.edx.org/school/purduex

Published

2015-08-20

Issue

Section

Physics and mathematics