The research of inertial navigation system systematic errors at aerial photography from unmanned aerial vehicles

Authors

  • Роман Володимирович Шульц Kyiv National University of Construction and Architecture 31 Povitroflotskyj Ave, Kiev, Ukraine, 03680, Ukraine https://orcid.org/0000-0003-2581-517X
  • Петр Давидович Крельштейн Kyiv National University of Construction and Architecture 31 Povitroflotskyj Ave, Kiev, Ukraine, 03680, Ukraine https://orcid.org/0000-0002-5353-7392
  • Ірина Анатоліївна Маліна Odessa State Academy of Construction and Architecture 4 Didrihsona str., Odessa, Ukraine, 65029, Ukraine https://orcid.org/0000-0001-8838-3779

DOI:

https://doi.org/10.15587/2313-8416.2015.49183

Keywords:

unmanned aerial vehicle, aerial photography, inertial navigation system, systematic shift of accelerometer, systematic shift of gyroscope, position accuracy

Abstract

The analysis of the status of aerial photography using unmanned aerial vehicles was performed. The feasibility of the use of miniature inertial navigation systems is proved. The computer model of a miniature electro-mechanical inertial navigation system was built. With the help of the developed model study of systematic errors of accelerometers and gyroscopes for position accuracy inertial navigation system at aerial photography using unmanned aerial vehicles was carried out

Author Biographies

Роман Володимирович Шульц, Kyiv National University of Construction and Architecture 31 Povitroflotskyj Ave, Kiev, Ukraine, 03680

Professor, Doctor of technical sciences, dean faculty of GIS and territory management

Department of engineering geodesy

Петр Давидович Крельштейн, Kyiv National University of Construction and Architecture 31 Povitroflotskyj Ave, Kiev, Ukraine, 03680

Associate professor, Candidate of technical science

Department of land management and cadaster

Ірина Анатоліївна Маліна, Odessa State Academy of Construction and Architecture 4 Didrihsona str., Odessa, Ukraine, 65029

Candidate of technical science

Department of engineering geodesy

References

Ai, M., Hu, Q., Li, J., Wang, M., Yuan, H., Wang, S. (2015). A Robust Photogrammetric Processing Method of Low-Altitude UAV Images. Remote Sensing, 7 (3), 2302–2333. doi: 10.3390/rs70302302

Mitrahovich, M. M., Silkov, V. I., Samkov, A. V., Burshtynskaja, H. V. et. al; Silkova V. I. (Ed.) (2012). Bespilotnyie letatelnyie apparatyi: Metodika sravnitelnoy otsenki boevyih vozmozhnostey [Unmanned Aerial Vehicles: Methods of comparative assessment of the combat capabilities]. Kyiv: TsNII VVT VS Ukrainy, 288.

Colomina, I., Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79–97. doi: 10.1015/j.isprsjprs.2014.02.013

Bekmachev, A. (2014). MEMS-giroskopyi i akselerometryi Silicon Sensing: angliyskie traditsii, yaponskie tehnologii [MEMS gyroscopes and accelerometers Silicon Sensing: the British tradition, the Japanese technology]. Journal Components and Technologies, 4, 18–26.

Zheltova, N. N., Obuhov, V. I. (2015). Primenenie mikromehanicheskih giroskopov v navigatsionnyih sistemah [Application of micromechanical gyroscopes for navigation systems]. Proceedings of the Alekseev Nizhny Novgorod State Technical University, 1 (108), 269–273.

Secrets of UAV photomapping. Available at: http://s3.amazonaws.com/DroneMapper_US/documentation/pteryx-mapping-secrets.pdf

Shin, E.-H. (2005). Estimation Techniques for Low Cost Inertial Navigation. Calgary, 206.

Abdel-Hamid, W. (2005). Accuracy Enhancement of Integrated MEMS-IMU/GPS Systems for Land Vehicular Navigation Applications. Calgary, 232.

Ellum, C. M. (2001). The Development of a Backpack Mobile Mapping System. Calgary, 172.

Salytcheva, A. O. (2004). Medium Accuracy INS/GPS Integration in Various GPS Environments. Calgary, 247.

Bagrova, M. S. (2001). Algoritmyi kompleksirovaniya inertsialnogo bloka nizkogo klassa tochnosti i sistemyi sputnikovoy navigatsii [Algorithms aggregation inertial unit low grade accuracy and satellite navigation systems]. Bauman Moscow State Technical University. Moscow, 17.

Grejner-Brzezinska D. A., Toth, C. K. (2004). High-Accuracy Direct Aerial Platform Orientation with Tightly Coupled GPS/INS System. Project, Ohio Department of Transportation, Office of Aerial Engineering, Federal Highway Administration.

Ivanov, V., Korol’ov, V., Oliyarnik, B. (2005). Ocinka vply`vu vlasnogo drejfu osi giroskopa na tochnist` vy`znachennya koordy`nat nazemnogo ruxomogo ob'yekta [Assessing the impact of its own axis gyro drift on accuracy of coordinates of ground moving object]. Modern achievements of geodetic science and industry, ІІ, 22–25.

Syisoeva, S. (2014). Tendentsii ryinka High-end MEMS-datchikov inertsii. Novyie urovni harakteristik i ispolneniya [Trends High-end MEMS inertial sensors. New levels of performance and characteristics]. Journal Components and Technologies, 6, 40–46.

Dmitrienko, A. G., Papko, A. A., Torgashin, S. I., Kiryanina, I. V. (2013). Ob issledovanii vozmozhnosti sozdaniya inertsialnyih moduley na osnove otechestvennyih tehnologiy ob'emnoy mikromehaniki [On the investigation of the possibility of creating inertial modules based on domestic technology bulk micromechanics]. Measurement. Monitoring. Management. Control, 3 (5), 45–53.

Biezad, D. J. (1999). Integrated Navigation and Guidance Systems. Reston: American Institute of Aeronautics and Astronautics, 242. doi: 10.2514/4.861994

Bromberg, P. V. (1979). Teoriya inertsialnyih sistem navigatsii [Theory of inertial navigation systems]. Moscow: Nauka, 296.

Published

2015-09-25

Issue

Section

Technical Sciences