Participation of oxygen and carbon in formation of oxidation-induced stacking faults in monocrystalline silicon

Authors

  • Иван Федорович Червоный Zaporozhe State Engineering Academy 226 Lenin ave., Zaporozhe, Ukraine, 69006, Ukraine
  • Алексей Вадимович Бубинец Zaporozhe State Engineering Academy 226 Lenin ave., Zaporozhe, Ukraine, 69006, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.53451

Keywords:

silicon, single crystal, oxygen, carbon, oxidation-induced stacking fault, fusion, heater, Chochralsky method, microdefects

Abstract

It is experimentally established, that density of oxidation-induced stacking faults (OISF) in the boron doped monocrystalline silicon plates, that above, than it is more relation of oxygen atoms concentration to carbon atoms concentration in them.

On research results of geometry of OISF rings in the different sections of single-crystal geometry of areas is reconstructed with their different closeness. At adjustment of the growing modes of single-crystals of silicon the increase of output of suitable product is observed

Author Biographies

Иван Федорович Червоный, Zaporozhe State Engineering Academy 226 Lenin ave., Zaporozhe, Ukraine, 69006

Doctor of Technical Sciences, Professor, Head of Department

Department of Non-Ferrous Metallurgy 

Алексей Вадимович Бубинец, Zaporozhe State Engineering Academy 226 Lenin ave., Zaporozhe, Ukraine, 69006

Department of Non-Ferrous Metallurgy 

References

Rejvi, K.; Gorina, S. N. (Ed.) (1984). Defekty i primesi v poluprovodnikovom kremnii. Moscow: Mir, 470.

Sadamitsu, S., Okui, M., Sueoka, K., Marsden, K., Shigematsu, T. (1995). A Model for the Formation of Oxidation-Induced Stacking Faults in Czochralski Silicon. Japanese Journal of Applied Physics, 34, L597–L599. doi: 10.1143/jjap.34.l597

Sinno, T. (1999). Modeling Microdefect Formation in Czochralski Silicon. Journal of The Electrochemical Society, 146 (6), 2300. doi: 10.1149/1.1391931

Saishoji, T., Nakamura, К., Nakajima, Н., Yokoyama, N., Ishikawa, F., Tomioka, J. (1998). Formation behavior of grown–in defects in silicon during Czochralski crystal – growth. Electrochtm. Soc. Proc., 98 (13), 28–40.

Wijaranakula, W. (1992). Numerical Modeling of the Point Defect Aggregation during the Czochralski Silicon Crystal Growth. Journal of The Electrochemical Society, 139 (2), 604. doi: 10.1149/1.2069265

ASTM F1188-00 (2000). Standard test method for interstitial atomic oxygen content of silicon by infrared absorption. ASTM International, West Conshohocken, PA. doi: 10.1520/f1188-00

ASTM F1391-93 (2000). Standard test method for substitutional atomic carbon content of silicon by infrared absorption. ASTM International, West Conshohocken, PA. doi: 10.1520/f1391-93r00

ASTM F1188 (2000). Standard practice for detection of oxidation induced defects in polished silicon wafers. ASTM International, West Conshohocken, PA.

ASTM F1809 (2000). Standard guide for selection and use of etching solutions to delineate structural defects in silicon. ASTM International, West Conshohocken, PA.

ASTM F1810 (2000). Standard test method for counting preferentially etched or decorated surface defects in silicon wafers. ASTM International, West Conshohocken, PA.

Taran, Ju. N., Kucova, V. Z., Chervonyj, I. F. et. al; Tarana, Ju. N. (Ed.) (2004). Poluprovodnikovyj kremnij: teorija i tehnologija proizvodstva. Zaporozh'e: ZGIA, 344.

Rekov, Ju. V., Chervonyj, I. F., Shvec, E. Ja., Golovko, Ju. V. (2012). Influencе of carbon atoms on formation of impurity complexes in silicon single crystals. Eastern-European Journal of Enterprise Technologies, 4/5 (58), 24–27. Available at: http://jet.com.ua/images/stories/vipsat/pfm/24_27.pdf

Published

2015-11-23

Issue

Section

Technical Sciences