Evaluation of integrated solution numerical method of mathematical model of mechanical oscillatory system dynamics

Authors

DOI:

https://doi.org/10.15587/2313-8416.2016.58823

Keywords:

mathematical model, time domain, oscillatory system, numerical method, calculation error

Abstract

A comparative analysis of the accuracy solutions of linear differential equations in the time domain to the developed integrated and a number of famous classical numerical methods is done. Test model examples show the high efficiency of the proposed numerical method regarding problems of analysis of dynamic processes of mechanical oscillatory systems

Author Biography

Петрo Васильович Дяченко, Cherkasy State Technological University 460 Shevchenka boul., Cherkassy, Ukraine, 18006

Candidate of Technical Science, Associate Professor

Department of Computer Science and Information Technology Management

References

Кrilov, V. I., Bobkov, V. V., Monastirniy, P. I. (1976). Vichislitelniye metodi. Vol. 1. Мoscow: Nаuка, 302.

Hairer, E., Nersett, С., Vanner, R. (1990). Resheniye obiknovennih differencialnih uravneniy. Nejestkiye zadachi. Мoscow: Мir, 512.

Basov, K. A. (2006). ANSYS и LMS Virtual Lab. Geometricheskoe modelirovaniye. Мoscow: DMK Press, 240.

Norenkov, I. P., Evstifeev, Y. А., Manichev, V. B. (1987). Adaptivniy metod uskorennogo analiza mnogoperiodnih elektronnih shеm. Izv. VUZov. Ser. Radioelectronika, 30 (6), 47–51.

Zhuk, D. М., Маnichev, V. B., Ilnickiy, А. О.; Stempkovskiy, А. L. (Ed.) (2008). Metodi i algoritmi resheniya differencialno-аlgebraicheskih uravneniy dlya modelirovaniya dinamiki tehnicheskih system i оbiektov. Problemi razrabotki perspektivnih mikro- i nanoelectronnih system. Мoscow: IPPМ RАN, 109–113.

Dyachenko, P. V. (2014). Kompiyterne modeliyvannya dinamiki kolivalynih procesiv mehanichnih system klasu zubchatih peredach. MONU. Cherkasskiy derjavniy tehnologichniy universitet. Cherkasy, 20.

Dyachenko, P. V. (2012) Prostorova matematichna model vlasnih chastot i form kolivany mechanichnoi systemi, klasy odnostupinchastih, evolventnih zubchastih peredach. Shtuchniy intelekt, 1, 54–60.

Maffezzoni, P., Codecasa, L., D’Amore, D. (2007). Time-Domain Simulation of Nonlinear Circuits Through Implicit Runge-Kutta Methods. IEEE Transactions on Circuits and Systems I: Regular Papers, 54 (2), 391–400. doi: 10.1109/tcsi.2006.887476

Butcher, J. C. (2008). Numerical methods for ordinary differential equations. John Wiley & Sons, 463. doi: 10.1002/9780470753767

Petzold, L. R., Jay, L. O., Yen, J. (1997). Numerical solution of highly oscillatory ordinary differential equations. Acta Numerica, 6, 437. doi: 10.1017/s0962492900002750

Published

2016-01-25

Issue

Section

Technical Sciences