Generalized Landauer-Datta-Lundstrom model of electron and heat transport for micro- and nanoelectronics

Authors

  • Юрий Алексеевич Кругляк Odessa State Environmental University, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2014.30728

Keywords:

nanophysics, nanoelectronics, electron transport, linear response, heat dissipation, ballistic resistors

Abstract

Generalized model of electron transport in the linear response regime developed by R. Landauer, S. Datta, and M. Lundstrom with application to the resistors of any dimension, any size and arbitrary dispersion working in ballistic, quasi-ballistic or diffusion regime up to calculation of conductivity near 0º K and at higher temperatures is summarized. There is also discussed still widely used concept of mobility, as well as the dissipation of heat and the voltage drop in the ballistic resistors.

Author Biography

Юрий Алексеевич Кругляк, Odessa State Environmental University

Doctor of Chemical Sciences, Professor

Department of Information Technologies

References

Landauer, R. (1957).Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM Journal of Research and Development, 1 (3), 223–231. doi: 10.1147/rd.13.0223

Landauer, R. (1970). Electrical resistance of disordered one dimensional lattices. Philosophical Magazine, 21 (172), 863–867. doi: 10.1080/14786437008238472

Landauer, R. (1996). Spatial variation of currents and fields due to localized scatterers in metallic conduction. Journal of Mathematical Physics, 37 (10), 5259. doi: 10.1063/1.531590

Datta, S. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/courses/FoN1

Datta, S. (2001). Electronic Transport in Mesoscopic Systems. Cambridge: Cambridge University Press.

Datta, S. (2005). Quantum Transport: Atom to Transistor. Cambridge: Cambridge University Press.

Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/resources/11763

Lundstrom, M. Nanoscales Transistors. Available at: www.nanohub.org/courses/NT

Pierret, R. F. (1996). Semiconductor Device Fundamentals. Reading, MA: Addison–Wesley.

Jeong, C., Kim, R., Luisier, M., Datta, S., Lundstrom, M. (2010). On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients. Journal of Applied Physics, 107 (2), 023707. doi: 10.1063/1.3291120

Berg, H. C. (1993). Random walks in biology. Princeton: Princeton University Press.

van Wees, B. J., van Houten, H., Beenakker, C. W. J., Williamson, J. G., Kouwenhoven, L. P., van der Marel, D., Foxon, C. T. (1988)Quantized conductance of point contacts in a two-dimensional electron gas. Physical Review Letters, 60 (9), 848–850. doi: 10.1103/physrevlett.60.848

Holcomb, D. F. (1999). Quantum Electrical Transport in samples of limited dimensions. American Journal of Physics, 67 (4), 278. doi: 10.1119/1.19251

Cvijovic, D. (2009). Fermi-Dirac and Bose-Einstein functions of negative integer order. Theoretical and Mathematical Physics, 161 (3), 1663–1668. doi: 10.1007/s11232-009-0153-9

Dingle, R. (1957). The Fermi-Dirac Integrals. Appl. Scientific Res., 6 (1), 225.

Kim, R., Lundstrom, M. S. Notes on Fermi-Dirac Integrals. Available at: www.nanohub.org/resources/5475

Lundstrom, M. (2000). Fundamentals of Carrier Transport, 2nd Ed. Cambridge: Cambridge Univ. Press, 440

Peter, Yu., Manuel, C. (2010). Fundamentals of Semiconductors. Physics and Materials Properties. Berlin: Springer, 775

Shur, M. S. (2002). Low Ballistic Mobility in GaAs HEMTs, IEEE Electron Device Letters, 23 (9), 511–513. doi: 10.1109/led.2002.802679

Wang, J., Lundstrom, M. (2003). Ballistic Transport in High Electron Mobility Transistors. IEEE Transactions on Electron Devices, 50 (7), 1604–1609. doi: 10.1109/ted.2003.814980

Ashcroft, N. W., Mermin, N. D. (1979). Solid State Physics. Philadelphia: Suanders College, 458

Yao, Z., Kane, C. L., Dekker, C. (2000). High-Field Electrical Transport in Single-Wall Carbon Nanotubes. Physical Review Letters. 84 (13), 2941–2944. doi: 10.1103/physrevlett.84.2941

Kruglyak, Yu. (2014). Landauer – Datta – Lundstrom Generalized Transport Model for Nanoelectronics, Journal of Nanoscience, 2014, 1–15. doi: 10.1155/2014/725420

Kruglyak, Yu. A. (2014). A Generalized Landauer – Datta – Lundstrom Electron Transport Model. Russian Journal of Physical Chemistry A, 88 (11), 1826–1836. doi: 10.1134/s0036024414110119

Kruglyak, Yu. A. (2013). The Generalized Landauer – Datta – Lunstrom Electron Transport Model. Nanosystems, Nanomaterials, Nanotechnologies, 12 (2), 415.

Kruglyak, Yu. A. (2013).From Ballistic Conductivity to Diffusional in the Landauer-Datta-Lunstrom Transport Model, Nanosystems, Nanomaterials, Nanotechnologies, 11 (4), 655–677.

Published

2014-12-25

Issue

Section

Physics and mathematics