Generalized Landauer-Datta-Lundstrom model of electron and heat transport for micro- and nanoelectronics
DOI:
https://doi.org/10.15587/2313-8416.2014.30728Keywords:
nanophysics, nanoelectronics, electron transport, linear response, heat dissipation, ballistic resistorsAbstract
Generalized model of electron transport in the linear response regime developed by R. Landauer, S. Datta, and M. Lundstrom with application to the resistors of any dimension, any size and arbitrary dispersion working in ballistic, quasi-ballistic or diffusion regime up to calculation of conductivity near 0º K and at higher temperatures is summarized. There is also discussed still widely used concept of mobility, as well as the dissipation of heat and the voltage drop in the ballistic resistors.
References
Landauer, R. (1957).Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM Journal of Research and Development, 1 (3), 223–231. doi: 10.1147/rd.13.0223
Landauer, R. (1970). Electrical resistance of disordered one dimensional lattices. Philosophical Magazine, 21 (172), 863–867. doi: 10.1080/14786437008238472
Landauer, R. (1996). Spatial variation of currents and fields due to localized scatterers in metallic conduction. Journal of Mathematical Physics, 37 (10), 5259. doi: 10.1063/1.531590
Datta, S. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/courses/FoN1
Datta, S. (2001). Electronic Transport in Mesoscopic Systems. Cambridge: Cambridge University Press.
Datta, S. (2005). Quantum Transport: Atom to Transistor. Cambridge: Cambridge University Press.
Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/resources/11763
Lundstrom, M. Nanoscales Transistors. Available at: www.nanohub.org/courses/NT
Pierret, R. F. (1996). Semiconductor Device Fundamentals. Reading, MA: Addison–Wesley.
Jeong, C., Kim, R., Luisier, M., Datta, S., Lundstrom, M. (2010). On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients. Journal of Applied Physics, 107 (2), 023707. doi: 10.1063/1.3291120
Berg, H. C. (1993). Random walks in biology. Princeton: Princeton University Press.
van Wees, B. J., van Houten, H., Beenakker, C. W. J., Williamson, J. G., Kouwenhoven, L. P., van der Marel, D., Foxon, C. T. (1988)Quantized conductance of point contacts in a two-dimensional electron gas. Physical Review Letters, 60 (9), 848–850. doi: 10.1103/physrevlett.60.848
Holcomb, D. F. (1999). Quantum Electrical Transport in samples of limited dimensions. American Journal of Physics, 67 (4), 278. doi: 10.1119/1.19251
Cvijovic, D. (2009). Fermi-Dirac and Bose-Einstein functions of negative integer order. Theoretical and Mathematical Physics, 161 (3), 1663–1668. doi: 10.1007/s11232-009-0153-9
Dingle, R. (1957). The Fermi-Dirac Integrals. Appl. Scientific Res., 6 (1), 225.
Kim, R., Lundstrom, M. S. Notes on Fermi-Dirac Integrals. Available at: www.nanohub.org/resources/5475
Lundstrom, M. (2000). Fundamentals of Carrier Transport, 2nd Ed. Cambridge: Cambridge Univ. Press, 440
Peter, Yu., Manuel, C. (2010). Fundamentals of Semiconductors. Physics and Materials Properties. Berlin: Springer, 775
Shur, M. S. (2002). Low Ballistic Mobility in GaAs HEMTs, IEEE Electron Device Letters, 23 (9), 511–513. doi: 10.1109/led.2002.802679
Wang, J., Lundstrom, M. (2003). Ballistic Transport in High Electron Mobility Transistors. IEEE Transactions on Electron Devices, 50 (7), 1604–1609. doi: 10.1109/ted.2003.814980
Ashcroft, N. W., Mermin, N. D. (1979). Solid State Physics. Philadelphia: Suanders College, 458
Yao, Z., Kane, C. L., Dekker, C. (2000). High-Field Electrical Transport in Single-Wall Carbon Nanotubes. Physical Review Letters. 84 (13), 2941–2944. doi: 10.1103/physrevlett.84.2941
Kruglyak, Yu. (2014). Landauer – Datta – Lundstrom Generalized Transport Model for Nanoelectronics, Journal of Nanoscience, 2014, 1–15. doi: 10.1155/2014/725420
Kruglyak, Yu. A. (2014). A Generalized Landauer – Datta – Lundstrom Electron Transport Model. Russian Journal of Physical Chemistry A, 88 (11), 1826–1836. doi: 10.1134/s0036024414110119
Kruglyak, Yu. A. (2013). The Generalized Landauer – Datta – Lunstrom Electron Transport Model. Nanosystems, Nanomaterials, Nanotechnologies, 12 (2), 415.
Kruglyak, Yu. A. (2013).From Ballistic Conductivity to Diffusional in the Landauer-Datta-Lunstrom Transport Model, Nanosystems, Nanomaterials, Nanotechnologies, 11 (4), 655–677.
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Юрий Алексеевич Кругляк
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.