Volumetric heat capacity calculation for simulation at melting of alloys
DOI:
https://doi.org/10.15587/2313-8416.2015.42632Keywords:
simulation of melting-crystallization process, volumetric heat capacity, approximationAbstract
The article considers volumetric heat capacity approximation methods for heating at simulation of melting of alloys. Due to complexity of volume-specific heat capacity determination approximation should be used. The calculation data and graphic examples of different approximation methods are given. For more flexibility it is proposed to use Gauss method for approximation
References
Verhoeven, J. C. J., Jansen, J. K. M., Mattheij, R. M. M., Smith, W. R. (2003). Modelling laser induced melting. Mathematical and Computer Modelling, 37 (3-4), 419–437. doi: 10.1016/s0895-7177(03)00017-7
Solov’eva, E. N., Uspenskiy, A. B. (1975). Skhemy skvoznogo scheta chislennogo resheniya kraevyh zadach s neizvestnymi granitsami dlya odnomernyh uravnenij parabolicheskogo tipa [Schemes of through computation of the numerical solution of boundary value problems with unknown boundaries for one-dimensional parabolic equations]. Methods of solving boundary and inverse heat conduction problems, 5, 3–23.
Breslavskiy, P. V., Mazhukin, V. I. (1991). Algoritm chslennogo resheniya gidrodinamicheskogo varianta zadachi Stefana pri pomoshchi dinamicheski adaptiruyushchihsya setok [The algorithm of a hydrodynamical version of Stefan problem numerical solution by dynamic adapting grid]. Mathematical modeling, 3 (10), 104–115.
Luk’yanenko, S. A., Tretyak, V. A. (2014). Problema ucheta zavisimosti koeffitsienta ob’emnoy teploemkosti ot temperatury pri modelirovanii lazerno-dugovoy naplavki [Temperature dependence consideration issue for coefficient of volumetric heat capacity in simulation of laser-arc pad weld process]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 1 (89), 177–182.
Pereloma, V. A., Shcherba, A. A., Podol’tsev, A. D. et al. (1998). Issledovanie teplovyh protsessov i structury poverhnostnogo sloya pri lazernoy naplavke poroshkovyh materialov [Heat process and the cover structure while laser cladding of powder materials research]. The Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 47.
Amara, E. H., Hamadi, F., Achab, L., Boumia, O. (2006). Numerical modelling of the laser cladding process using a dynamic mesh approach. Journal of Achievements in Materials and Manufacturing Engineering, 15 (1-2), 100–106. doi: 10.1109/caol.2005.1553842
Livshits, B. G., Kraposhin, V. S., Linetskiy, Ya. L. (1980). Fizicheskie svoystva metallov i splavov [Physical properties of metals and alloys]. Metallurgy, 320.
Knyazeva, A. G., Kryukova, O. N., Burkina, N. V., Sorokova, S. N. (2010). Problemy modelirovaniya tehnologicheskikh protsessov poverkhnostnoy obrabotki materialov i naneseniya pokrytiy s ispol’zovaniem vysokoenergeticheskikh istochnikov [Simulation issues of surface treatment and coating materials using high energy sources]. Izvestiya of TPU, 317 (2), 93–101.
Ivanov, D. A., Kuvaev, N. V., Kuvaeva, T. V. (2010). Raschet teploemkosti nizkouglerodistoy nizkolegirovannoy stali pri modelirovanii neizotermicheskikh fazovikh prevrashcheniy [The heat capacity of low-carbon low-alloy steel calculation for modeling of non-isothermal phase transitions]. Theory and practice of metallurgy, 1–2, 43–48.
Holovko, L. F., Lukianenko, S. O., Mikhailova, I. Yu., Tretiak, V. A. (2015). Kompyuterne modeliuvannia u lazernykh tekhnolohiiakh [Computer simulation in laser technologies]. Text, 236.
Badaiev, Yu. I., Sydorenko, Yu.V. (1998). Realizatsiia interpoliatsiynoho metodu Gaus-funktsii ta porivnialnyy analiz [Interpolation method by Gauss function implementation and comparative analysis]. Applied geometry and engineering graphics, 63, 33–37.
Downloads
Published
Issue
Section
License
Copyright (c) 2015 Юлия Всеволодовна Сидоренко, Валерія Анатоліївна Третьяк
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.