Volumetric heat capacity calculation for simulation at melting of alloys

Authors

  • Юлия Всеволодовна Сидоренко National Technical University of Ukraine «Kyiv Polytechnic Institute» Pobedy ave., 37, Kyiv, Ukraine, 03056, Ukraine
  • Валерія Анатоліївна Третьяк National Technical University of Ukraine «Kyiv Polytechnic Institute» Pobedy ave., 37, m. Kyiv, Ukraine, 03056, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.42632

Keywords:

simulation of melting-crystallization process, volumetric heat capacity, approximation

Abstract

The article considers volumetric heat capacity approximation methods for heating at simulation of melting of alloys. Due to complexity of volume-specific heat capacity determination approximation should be used. The calculation data and graphic examples of different approximation methods are given. For more flexibility it is proposed to use Gauss method for approximation

Author Biographies

Юлия Всеволодовна Сидоренко, National Technical University of Ukraine «Kyiv Polytechnic Institute» Pobedy ave., 37, Kyiv, Ukraine, 03056

Candidate of Engineering Sciences, Associate professor

Department of Automation of Power Processes and Systems Engineering 

Валерія Анатоліївна Третьяк, National Technical University of Ukraine «Kyiv Polytechnic Institute» Pobedy ave., 37, m. Kyiv, Ukraine, 03056

Candidate of Engineering Sciences, , Associate professor

Department of Automation of Power Processes and Systems Engineering 

References

Verhoeven, J. C. J., Jansen, J. K. M., Mattheij, R. M. M., Smith, W. R. (2003). Modelling laser induced melting. Mathematical and Computer Modelling, 37 (3-4), 419–437. doi: 10.1016/s0895-7177(03)00017-7

Solov’eva, E. N., Uspenskiy, A. B. (1975). Skhemy skvoznogo scheta chislennogo resheniya kraevyh zadach s neizvestnymi granitsami dlya odnomernyh uravnenij parabolicheskogo tipa [Schemes of through computation of the numerical solution of boundary value problems with unknown boundaries for one-dimensional parabolic equations]. Methods of solving boundary and inverse heat conduction problems, 5, 3–23.

Breslavskiy, P. V., Mazhukin, V. I. (1991). Algoritm chslennogo resheniya gidrodinamicheskogo varianta zadachi Stefana pri pomoshchi dinamicheski adaptiruyushchihsya setok [The algorithm of a hydrodynamical version of Stefan problem numerical solution by dynamic adapting grid]. Mathematical modeling, 3 (10), 104–115.

Luk’yanenko, S. A., Tretyak, V. A. (2014). Problema ucheta zavisimosti koeffitsienta ob’emnoy teploemkosti ot temperatury pri modelirovanii lazerno-dugovoy naplavki [Temperature dependence consideration issue for coefficient of volumetric heat capacity in simulation of laser-arc pad weld process]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 1 (89), 177–182.

Pereloma, V. A., Shcherba, A. A., Podol’tsev, A. D. et al. (1998). Issledovanie teplovyh protsessov i structury poverhnostnogo sloya pri lazernoy naplavke poroshkovyh materialov [Heat process and the cover structure while laser cladding of powder materials research]. The Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 47.

Amara, E. H., Hamadi, F., Achab, L., Boumia, O. (2006). Numerical modelling of the laser cladding process using a dynamic mesh approach. Journal of Achievements in Materials and Manufacturing Engineering, 15 (1-2), 100–106. doi: 10.1109/caol.2005.1553842

Livshits, B. G., Kraposhin, V. S., Linetskiy, Ya. L. (1980). Fizicheskie svoystva metallov i splavov [Physical properties of metals and alloys]. Metallurgy, 320.

Knyazeva, A. G., Kryukova, O. N., Burkina, N. V., Sorokova, S. N. (2010). Problemy modelirovaniya tehnologicheskikh protsessov poverkhnostnoy obrabotki materialov i naneseniya pokrytiy s ispol’zovaniem vysokoenergeticheskikh istochnikov [Simulation issues of surface treatment and coating materials using high energy sources]. Izvestiya of TPU, 317 (2), 93–101.

Ivanov, D. A., Kuvaev, N. V., Kuvaeva, T. V. (2010). Raschet teploemkosti nizkouglerodistoy nizkolegirovannoy stali pri modelirovanii neizotermicheskikh fazovikh prevrashcheniy [The heat capacity of low-carbon low-alloy steel calculation for modeling of non-isothermal phase transitions]. Theory and practice of metallurgy, 1–2, 43–48.

Holovko, L. F., Lukianenko, S. O., Mikhailova, I. Yu., Tretiak, V. A. (2015). Kompyuterne modeliuvannia u lazernykh tekhnolohiiakh [Computer simulation in laser technologies]. Text, 236.

Badaiev, Yu. I., Sydorenko, Yu.V. (1998). Realizatsiia interpoliatsiynoho metodu Gaus-funktsii ta porivnialnyy analiz [Interpolation method by Gauss function implementation and comparative analysis]. Applied geometry and engineering graphics, 63, 33–37.

Published

2015-05-19

Issue

Section

Technical Sciences